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Intelligence is learning from mistakes!

... 1T a machine I1s expected to be Infallible, it cannot also be Intelligent.
There are several mathematical theorems which say almost exactly that.
But these theorems say nothing about how much intelligence may be
displayed it a machine makes no pretence at infallibility...”

— Alan Turing, 1947/



Remarkable Success of MARL in Gaming Al Applications

Great advantages have been made since 2019!
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Multi-agent Intelligence Components
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Game Theory Lays the Foundation for Multi-agent Learning

Multi-agent learning problems:

Normal machine learning problems:
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Recommended Resources:

» A self-contained MARL survey from game theoretical perspective:

o https://arxiv.org/abs/2011.00583

o Jextbook
» <Prediciton, learning and games> Nicolo Cesa-Bianchi
o Algorithmic Game Theory lectures:

» http://www.cs.jhu.edu/~mdinitz/classes/AGT/Spring2020/
(Uncited screenshots refer to Lectures 1,2,3,4,5,6,7,8,9)

o If you want to know more details about modern MARL methods

PREDICTION, LEARNING, AND GAMES
» Talk:A General Solver to Two-player Zero-sum Games

Nicolo Cesa-Bianchi Gabor Lugosi

» Talk: Recent advances of MARL in Gaming Al

» Talk: Dealing with Non-transitivity in Two-player Zero-sum Games

» If you want to get hands to solve real-world games, e.g., Poker/Chess

» https://github.com/sjtu-marl/malib



https://arxiv.org/abs/2011.00583
http://www.cs.jhu.edu/~mdinitz/classes/AGT/Spring2020/
https://www.techbeat.net/talk-info?id=501
https://www.bilibili.com/video/av969218959/
https://app6ca5octe2206.pc.xiaoe-tech.com/detail/v_6104f27fe4b0cce271b8321e/3?fromH5=true
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Algorithmic Game Theory Overview

» Game theory studies the interaction between rationale (selfish) agents.

o It is an area between CS and Economics.

» MARL is to study algorithmic games theory with powerful machine learning tools.

|.Computing Equilibria
* |s it reasonable to model behaviours through different equilibrium concept (e..g, the “invisible hands”)

* how can we compute the equilibrium efficiently and distributedly ?

2.Understanding the Inefficiency of Equilibrium

* |s the equilibrium “optimal” compared to maximal social welfare ?

* bounding and deriving the distance to optimality

3.Mechanism Design

* The science of “rule making’: can we design games so that selfish agents can lead to good outcomes !

* Heavily focus on auctions: how to design the auction rules to incentivise agents to tell the truth.



Computing Equilibria

Traffic intersection is naturally a multi-agent system. From each driver’s perspective, in order to perform the
optimal action, he must take into account others’ behaviours.

what you see

Yield Rush

s G0 w2
m Rush (2; 1) _

scenario normal-form game

 When the drivers are rational, they will reach the outcome of a Nash Equilibrium.
It is the outcome of interaction. Knowing it can predict future.

» Real-world decision making has cooperation & competition. For each agent, how
to infer the belief of the other agents and make the optimal action is critical.

State s’

State s

e The concept of using traffic light is in fact a correlated equilibrium.

....................

ﬂz r'(s,a',a?), r’(s,a',8%)-.

Two-player game - |  Many-agent system is when agents >> 2. It is a very challenging problem to

.....................

|per time snapshot compute equilibrium, thus making decisions.




The Inefficiency of Equilibria
)

c(x)=1 c(x)=1

oI

c(x) =x

()

(a) Initial network (b) Augmentéd network

Figure 1: Braess’s Paradox. The addition of an intuitively helpful edge can adversely affect
all of the traffic.

optimal traffic: half s->v->1, half s->w->1 optimal traffic: all goes s->v->w->t
de b Eperson il cosl per pelsen
, value of worst Nash 2
price of anarchy: — = — > ]
optimial outcome 5/ 2

Selfish behaviours can lead to inefficient equilibrium ! Can we bound them for real-world problems!?



Mechanism Design

» Suppose we are to organise an auction, each player’s utility is set as (valuation - final price) ., how can we set the

auction rule: the mechanism of determining the final price? We want it to be that all players bids their valuations.
» Highest price auction:
» Fach player will bid less than valuation, it he wins the bids, he will try to decrease the price.
+ [he final price depends on others’ valuations. It Is unclear for both players and auctioneer to practice

o Second-price auction:

+ Player bids the valuation price is the dominant strategy. Assuming b; to be the highest price.
fv; < b; then O utility is better than negative, thus bidding v,
fv; > b; bidding v; is the always dominant than bidding other numbers.

° [In many real-world problems, how can we design that meets

» See Zhengyang’s talk at RLChina for this topic.
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Nash Equilibrium

° Let n players, S = §; X --- X §, is the joint strategy profile,u; : § — R is the utility function, Nash equilibrium is

r b [ui (Sl,...,Sn)] = [ui (Sl,...,Sn)] Vu, € AS,-

e
» Mixed strategy Nash equilibrium always exists in finite player finite action games.

» For continuous utility games, the strategy set needs to be compact

» Note that y; € Ag can be replaced by a € §; because deviation is at most a pure strategy !

» Here no state transitions are considered. In Markov game, the solution concept is Markov Perfect Equilibrium.

N M
» The expectation is computed as follows xTAy - Z ZAzjxiyj
i=1 j=1
M
Z ZAZ-]-PI'[ player 1 plays 1]Pr| player 2 plays J]

=1 |

L~ %



Nash Equilibrium in Two-Player Zero-Sum Games

» von Neumann theorem: Two-player Nash can be computed in P-time through linear programmes (LP).
Dual problem Minimax theorem

row player maximises the worst situation column player’s view zero-duality gap for convex problems

S e max minp ' Aq
st p'A>v-1 / st.q'A' <v-1 H : =qmin max p'Aq
p>0andp'l=1 q>0andq'l=1 g

» The v* is the Nash value

& oy Ve dle o definiion of v, v = v due to being the LP selution.

+ corollary: all Nash value are the same (saddle point is unigue Iin bimatrix game)

» The (p, q) is the Nash equilibrium:

® DEoor: suppose the player plays x, y instead ofp q

S — Z g = max(Ag). —v = v, p Ay — Z (pTA) Y, 2 min (pTA), = v, = V¥, thus no incentives to deviate.

i€[N] J je[M] i
| =1

e Sion’s minimax theorem generalises to quasi-convex/concave functions ml)? sup f(x, y) = sup mel)f(lf(xa y)
yeY yeYy *



Fictitious Play [Brown [|951]

* Maintain a belief over the historical actions that the opponent has played, and the
learning agent then takes the best response to this empirical distribution.

: 1 —1
al.t’ = BRi(pii = 7T=ZOJ{afi =a,a € A})

1 1
pl?“ — (1 - 7)pl.t+ 761;’ , forall 1

° It guarantees to converge, in terms of the Nash value, in two-player zero-sum games,

potential games and 2 X 2 games , and, the average policy converge to the Nash strategy.

Player 2

° Examples: A

)
N o

P 4
(3/4, 1/4) | (1/4, 3/4)
(3/4,5/4) | (5/4,3/4)
(7/4,5/4) | (5/4,7/4)
(7/4,9/4) | (9/4,7/4)

A | (1,100

- Player 1

e W N = OO
C o O

B {©0) | (1,1)

oo (1/2,1/2) (1/2,1/2)



Double Oracle [McMahan 2003}

» Double Oracle best responds to the opponent’s Nash equilibrium at each iteration.

 To solve the game by solving subgame Nash because not all pure strategies are “useful” in the
support of Nash.

o [t is much faster than LP, but In the worst-case scenario, it recovers to solve the original game.

Hiteration O: restricted game R vs R
Hiteration 1:

Algorithm 1 Double Oracle (McMahan et al., 2003)

[: Input: A set LI, C strategy set of players _ examp|e
2: Ilp, CYp: initial set of strategies ° solve Nash of restricted game
3: fort =1 tooodo (1!050)!(1’0’0) R P S
4: if II; # II;—1 or Cy # C;—1 then ° unrestricted Br!, Br’ =P, P
5: Solve the NE of the subgame G: mjteration 2:
(w7, €7) = arg miirea,, arg MaXeeac, 7' Ac ° solve Nash of restricted games R
6: Find the best response a;,1 and ¢; 1 to (7}, ¢}): (0,1,0), (0,1, 0)
@i q = argMingema' Ac} - ’ P
Cii1 = Arg maXeco m | Ac ® unrestricted Br' ,Br =S5, S
7: Update [1;.1 = II;U{as11}, Cii1 = CtU{esa1} Hiteration 3: S
8: elseif lI; =1I;_; and C; = C;_1 then » solve Nash of restricted game
9: Te.rminate (1/3, 1/3, 1/3) , (1/3; 1/3, 1/3)
10:  end if mjteration 4: no new response, END
[1: end for

° output (1/3, 1/3, 1/3)




Double Oracle [McMahan 2003}

° It guarantees to converge to Nash equilibrium in two-player zero-sum games.

* Ve need to prove that early stopping also leads to Nash equilibrium.

» Convergence proof:

+ DO finally recovers to solve the whole game

e Correctness proof:

* SUPpPOSE

DO stops at the j-th sub-game (l.e., N0 new best responses are added)

* Vp,V(p,q) 2v=Vp,max V(p,q) 2 v

! = Vp, max V(p,, q) < max,(p,q)
Vq,V(p;,q) <v=>max V(p;,q) < v ! . |
q p. must be the minimax optimal,

J
q; Vice Vversa, so (pj, g;) Is the final Nash




Policy Space Response Oracle [Lanctot 201 7]

» A generalisation of double oracle methods: the best
responser is implemented through deep RL models.

» Each RL model is now a “pure strategy”.

° A meta-game is (II, U,n) where I1 = (I11;,...,IL) is the
set of policies for each agent and U : Il - R" is the

reward values for each agent given a joint strategy profile.

° 0_; is distribution over (. HlT), a.k.a meta-strategy
» PSRO generalises all previous methods by varying o_..
® independent learning: o_; = (0,...,0,0,1)
= (0:....0.1.0)
B ficticious play:o . = (1/T,1/1,...,1/T.0)
= PSRO: o_; = Nash(IT"~, U)

l

= self-play: o_;

- Algorithm 1: Policy-Space Response Oracles
~ input :initial policy sets for all players II
Compute exp. utilities U for each joint 7 € II
- Initialize meta-strategies o; = UNIFORM(II;)
~ while epoch e in {1,2,---} do
for player i € [[n]] do
for many episodes do
Sample 7_; ~ o_;
Train oracle 7; over p ~ (7, mw_;)
augment strateay pool JIERE I FRURE
Compute missing entries in U from II
Compute a meta-strategy o from U
Output current solution strategy o; for player 2

@ Environment G ~ P(G) - Forward Pass \\\
m(¢}l’¢2)

N ] e [
01— 0 Misi e+ [ M| Cep(n. ©6))
®, = ($1. ) sl ]
\ .': "-‘ EH_I (I)T= {471’452’ '-"¢T
DD (Neural) Meta-Solver fo(M,) — z  BestResponse Oracle 5




PSRO on Google Football !

https://sites.soogle.com/view/diverse-psro/

\ 4
PSRO(left) vs. PSRO w. BD&RD(right) SelfplayLleft) vs. PSRO w. BD&RD(right)

Strategy: make offside —— Strategy: high pass to top & short pass & score

make offside push and run



Two-Player General-Sum Games

» Exponential-time algorithms are the best we can hope for.

e Support Enumeration Method:

Theorem: a best response has to be a pure strategy that satisfies
x;, >0 = (Ay), = max (Ay), , that is, x is a best response to y if only if x has honzero

ke[N]
probability only on pure strategies that max expected utility against y.

Proof: if x; > 0, then x; must be best response, otherwise suppose (Ay); < max (Ay), it will contradict

. kE[N]
YAy 2 X (AY) = x(Ay); + Z X(AY)y
) k#i
< x; max (Ay), + Z Xx; max (Ay);
kE[N] = " ke[N]
JF#1
= x; max (Ay), + (1 — xl-) max (Ay), = max (Ay),
ke[N] ke[N] kE[N]

i1 2 bhestreponse, then x. > ()

N
A — Z r(Ay), = 2 x{(Ay). = Z x; max (Ay), = max (Ay), Z x; = max (Ay),
i=1

i2x#0 i:x#0 k€[N] ke[N] 0 kE[N]



Two-Player General-Sum Games

» Support Enumeration Method:

Theorem: a best response has to be a pure strategy that satisfies
x;, > 0= (Ay), = max (Ay), , that is, x is a best response to y if only if x has nhonzero

ke[N]
probability only on pure strategies that max expected utility.

+ we can have a guess of the Nash support (I, ) and then propose the Nash by solving the following LP

=

2. %=1

jeJ
insz =v VjelJ
il
ZAinj — v =
jej

+ Given the proposal (x, y) we can then check if # = max (Ay), and v = max (xTB) are met.
ke[N] ke[M]



LCP formulation of Two-Player General-Sum Games

» Support Enumeration Method is more like a heuristic search.
° Here we provide a formal formulation through linear complementarity problem (LCP)
o LCP is very much like an LP, but with a new constraint built on a slack variable.

* Recall that in two-player zero-sum game, we can have

minimize UF minimize UF
. ' : . L Ly .
subject to Z Uy (a{,aé‘) g = O Vi A subject to Z Uy (a{,%) - S+ = UF Ve 4,
k€A, k€A,
@ ko
Z = Z sy =1
k€A, k€A,
s5 >0 Vk € A, 5= ) Vk € A,

rl >0 Vj € A,



LCP formulation of Two-Player General-Sum Games

° Solving the Nash of two-player general-sum games is an LCP problem.

+ Both two players' variables need to be considered rather than one player (unlike two-player zero sum!)
+ There Is no objective, it Is rather a feasibility program (finding the solution that meets the conditions).

+ The last complementarity condition that prevents unbounded U*, V* is non-linear; turn LP into LCP

o If an action is played x/ > 0, it has to be a best response: r{ = (), otherwise it can |ust deviate 1o reach ¥«

2A<a{,a§)-yk+r{=v* vj €A,

k€A,

ZB(a{,aé‘)-xj+r§:U* Vke A,

Y LY Y=l P00 20 YicA YEEA

JEA, k€A, valid prob. distirbution

7’{ Z O, Ié{ Z 0 V] = Ala Vk & A2 slack variables

r{-xj=0, ré‘-yk=0 Ve A Ve i

complementarity condition



Lemke-Howson Method

Solving the LCP problem through Lemke-Howson:
» A classical algorithm that combines game theory, convex analysis and graph theory

» Non-degenerate games: for a pure strategy, there can only be at most one best response.
» Non-degenerate games have the same Nash support size for both players: |p*| = | g™ |.
. Consider polyhedron: p = {(u,x) %20,Y x=1x"B<u- 1} D {(v,y) 1%,20,) 3 =LAy <v- 1}

+ These polyhedra describes the space of mixed strategies with an upper bound on the best response value
from the other player will react.

o Consider the (bounded) polytope: P= {x|x;>0x"TB <1} and 0 = {y | y; > 0,4y < 1}.
o Setting U* = V* = 1 is generic, there exist bijective mappings between P, Q and P, O

» We are interested in the graph that are composed by the corner points of P, Q , because

t erther means x; is erther in Nash support, or column j Is a best response to x.
L) = {i|x=0}0 {j\ - 1} e {j\yj=0} U {i\ (Ay) = 1}



Lemke-Howson Method Example

Lo ={ilx=0}u{j| (x"B) =1} Loy ={jly=0}u{il(ay),=1]

0.1 6.0
2.0 | 5.2
3.4 3.3

<Multiagent Systems: Algorithm, Game Theoretic and Logic Foundation, page 95>



Lemke-Howson Method

Solving the LCP problem through Lemke-Howson:

 We are interested in the graph that are composed by the corner points of P, Q , because it either means x; is

not In Nash, or opponent’s column j Is a best response to x. Let's label those corner points by the constraint id:

B Uis-0luli1') =1}

L(y)={j\y]':()}u{i| (Ay)izl}

* Proof: <:if (x,y) is a Nash, then x; is erther 0,
and thus 1 € L(y).Therefore, every label appears

thus i € L(x), or; is a best response to (Ay);, = 1,
only once in L(x) U L(y),so L = L(x) U L(y).

=i L = L(x)U L(y), by definition, we can know that the Tellowing set s & MNash

({ie[N]:fyinj:I} (i € L)), {je[M]:ixiBiJ-:l} (jeL(x))>
j:l =1

» Intuition: finding Nash is just find vertices of P, O that contains all of the labels.



Lemke-Howson Method

<Multiagent Systems: Algorithm, Game Theoretic and Logic Foundation, page 95>



Lemke-Howson Method

e Lemke-Howson Method:
* Intuition: finding Nash is just find vertices of P, O that contains all of the labels.

° In order to find the completely labelled pairs (the Nash ), we define:
o G =Gy X Gy, with vertices v = (vl, vz) where v; € V(Gl) and v, € V(GZ).
o Edge of E(G) = {(v}, ), (v, ) € GX G : if (v,v]) € G; } U{(v, ), (v,v}) E GX G : if (v, V) € G, |
¢« Itv)=1L (vl) U L (vz) {0 cachl yeriex v = (vl, vz) e V(G)

+ Let's focus on the subgraph in G that is almost fully labelled but only lack the label k

e o MUN we wnite U, = (v e V(G) | L(v) D MU N\ k]| for the subset of vertices except k.

* Intuition: Nash equilibrium in U} has degree only equal to 1.

+ Nash is exacty MU N, so are in U, Vk
+ Since Nash is a fully labelled point and L(v;) N L(v,) = @&, thus Nash in U, can only have degree 1 (either best response

or not in the Nash support, cannot have both ).

+ In U, the degree of every other vertex apart from Nash have degree 2 (both in G; and G,).

+ An effective algorithm: walk along the edges in G, and drop the nodes with degree of 2.



Lemke-Howson Method

» An effective algorithm: walk along the edges in GG, and drop the nodes with degree of 2.

L) = {il5=0}u{jl (x"B) =1}
J
Gli
(0,0,1)
a%,a%,a%
(0. 3. %)
at,ad, a’
(1, 0,0)
o3 a3l 1
(33
o3, al.

L(y)={j\)’j=0}u{” <Ay)i:1}

GQZ

(,1)1
aj, as

b )

Start: (0,0,0) (0,0)

(0,00) = (0,1,0), drop a?, pick a;
(0,0) = (0,1), drop a?, pick a;
(0,1,0) = (2/3,113,0), drop a, pick a,
(0,1) = (1/3,2/3), drop a,, pick a;

Terminate: because now we have
3 0 0
ai, a,,a5}Ula,, a;} tully labellea

Output: (2/3,1/3,0), (1/3,2/3)

<Multiagent Systems: Algorithm, Game Theoretic and Logic Foundation, page 95>



Lemke-Howson Methods

Algorithm (Lemke-Howson)
Input: A Non-degenerate bimatrix game (A, B).
Output: One Nash equilibrium of the game.

1. Choose k € M UN.
2. Start with (z,y) = (0,0) € G. Drop label k from (z,y) (from z € P if k € M, from y € Q if k € N).

3. Let (z,y) be the current vertex. Let [ be the label that is picked up by dropping label k. If [ = k,
terminate and (z,y) is a Nash equilibrium of the game. If [ # k, drop [ in the other polytope and
repeat this step.

Remarks:

» Traversing the whole graph G to add missing labels and drop duplicate
labels (i.e. pivoting) until we find one set of nodes that are fully labelled.

» Guarantee to find one Nash, but not all of them! Determining whether
all Nash are found is not even NP.

» Exponential time complexity because G has the number of vertices that

is exponential in n7, m (combinatorial many)

° Because LCP has no objective, we cannot tell the progress before
finding a solution.

» Corollary: almost all games have an odd number of Nash equilibrium.

7)) G

) (enstinct the

plye

P ={xer* | %70 ,KT&P:\‘J.

X 20
wp D Uz {00,040, %),
TR el
W+ X €|
2) | opel the verfex

Co.h

-

P: Lo)°)~° {O,]]
(.'/3,0) * "l3‘,

a: ‘_Q,Q) - 5113‘1
U'R,0) : 40,3}

3) Lemke —Howsea

R P a

%™ : N

o‘ 1‘; NG

&l | b wl 3y <
N

when y; is the best
response to X

when y, is the best
response to X

('%) o)

(o, ') : 40,24
(.‘[Q, ‘h) S 12’137.

(Yl - S0 1Y
(ol ‘/5) g 1“)&-

sewrt: (&,w): 90,1,2,3). hfep 0 fomnP, pick 3,
(b,w) : 1,4 31,
th,2): {1,243) deop | foon P, Picli
CLi2): 41,093) dmopa $nm &, picka

ce,yl: §0,0,2,3) Terainate
uiput: Nemmolired (L) := Lh'A), LA, {v)




Potential Games

o Potential Game is the other side of the coin where we know how to solve Nash.

» A general game decomposition results suggest that

potential harmonic

[Candogan 2010]

Normal-form Game = Potential Game @ Harmonic Game

games games

» Potential games has no curl, harmonic games has no divergence.

(1,1,0)

' /;
(1,0,0) < . (1,0,1) e
L 01,0 L - (0,1,1)
1 s

(0,0

o

) < ] (0,0,1)

(a) Flow representation of the road-sharing game.
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(b) Potential Component.
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(0,0,1)

2

(c) Harmonic Component.

 In bimatrix games, potential game is related to the identical interest game, harmonic

game is related to the zero-sum games.

° Since one can always write (A, B)=(

A-B B-A

2

9

2

ZEro-sum

i

D (

A+B B+ A

2

2

2

team-game




Potential Games

» Potential Game are those games that can be described a potential function:

D (s_;,5/) — D(s) = C; (s_;5}) — C(s),Vi € [n],s € 8,5/ €S,

o

I ., WO

(2,1) (0,0)

° The outcome of any player’s any possible deviation are captured by the change in .

» Knowing the location deviations from a global viewpoint.

° Examples of potential games:

*

*

All fully cooperative games are the potential game. Potential is the reward function.

The routing game we have seen Is a potential game.

Each player choose a path P; (e.g. s->v->1)

Figur

all of the trafﬁc.

<\

(a) Initial network (b) Augmented network

e 1: Braess’s Paradox. The addition of an intuitively helpful edge can adversely affect

B e cost s thenCA(f) = Z C (fe), 5 ‘ {i e € P-} ‘ is the number of players using edge e.

" We can find a potential function ®(f) = Z 2 ¢ [ /) such fhat C(f) C(f) =

eel;

eckE j=1

All potential games are also routing games.

(f) —

().



Best Response Dynamics in Potential Games

® |Theorem: every potential games has a pure Nash equilibrium

o Pproof: s =argmin @(s) IS the pure Nash otherwise any player had incentive to deviate would have a smaller
sy

value. This proof leads to an interesting learning algorithm that guarantees to convergence.

» Best response dynamics can lead to Nash convergence.

e While the current outcome s is not a e-PNE:

— Pick an arbitrary player i that has an e-move — a deviation s, with C;(s},s_;) <
(1—€)C;(s) — and an arbitrary such move for the player, and move to the outcome

(527 S—’i) '

» A polynomial time convergence bound can be proved.

Theorem 3.2 (Convergence of e-Best Response Dynamics [2]) Consider an atomic
selfish routing game where:

1. All players have a common source verter and a common sink vertex.

2. Cost functions satisfy the “a-bounded jump condition,” meaning c.(z + 1) € [c.(x), a -
c.(x)] for every edge e and positive integer x.

3. The MaxGain variant of e-best-response dynamics is used: in every iteration, among
players with an e-move available, the player who can obtain the biggest absolute cost
decrease moves to its minimum-cost deviation.

Then, an e-PNE 1s reached in (k?a log M) iterations.

CI)min




Best Response Dynamics in Potential Games

» Best response dynamics has polynomial time rate.

Theorem 3.2 (Convergence of ¢-Best Response Dynamics [2]) Consider an atomic
selfish routing game where:

1. All players have a common source vertex and a common sink vertez.

2. Cost functions satisfy the “a-bounded jump condition,” meaning c.(x + 1) € [ce(x), -
c.(x)] for every edge e and positive integer x.

3. The MaxGain variant of e-best-response dynamics is used: in every iteration, among

players with an e-move available, the player who can obtain the biggest absolute cost
decrease moves to its minimum-cost deviation.

Then, an e-PNE is reached in (52 log %S?n)) iterations.

» Check the proof in [S. Chien 201 I].

s first prove the existence of a player with high cost

+ then prove the player chosen to take best response has cost within an a factor of that of any other player.
+ third we can bound the decrease of potential function for each rteration.

° Note that polynomial in the number of joint strategies (e.g, 2" for 2 strategy n players)

 |f either the assumptions on bounded jump condition, single source and sink, MaxGain
is dropped, then it could take exponential number of iterations [A. Skopalik 2008].
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Multi-Agent Reinforcement Learning

» Modelled by a Stochastic Game (&, /!

m & denotes the state space,

» o is the joint-action space &' X

S g

X d

RU(s,a',a™) is the reward function for the i-th agent,

,n}, gg{l,...,n}

i

T XA XS — [0,1] is the transition function based on the joint action,

m 9P, is the distribution of the initial state, y is a discount factor:

m Special case: n =1 — single-agent MDP | &' | = 1 — normal-form game

s Dec-POMDP: assume state is not directly observed, but agents have same reward function.

» Each agent tries to maximise its expected long-term reward:

O .(s,a) = R(s,a) + YE

vop | Vi

| State s

Many agents

Environment

X

- Two-player stochastic

game example

State s’

o2 1@, isalal.

.................
.....................

.....................
...................
....................
.....................




Multi-Agent Reinforcement Learning

» Value-based method:

m [he sense of optimality changes, now it depends on other agents !
Qi,t+1 (Sk’ ”t) = Qi,t (St’ ”t) T O‘[Ri,t+1 ) evali{Q-,t(StH» ' )} = Qi,t (St’ ”t)]
7. (s, - ) = solve;{ Q. (s, - )}

+ Fully-cooperative game: agents share the same reward function

eval;{ Q. (s, )} = max Q; (s, a)

SOlvei{ Q. (s, - )} = arg ma ( s Q; (s a;; a—i))

a; a

fully fully
cooperative competitive

+ Fully-competitive game: sum of agents' reward Is zero

eval,{ Q (s,.1, )} = maxminE_|Q, (s,a;a_)|

ro g

solve,{ Q. (s, - )} = argmaxminE_|Q; (s, a; a_))]

o a

m Assuming agents share the either the same or completely opposite interest is a strong assumption.



Nash Equilibrium to MARL

» Value-based method:

7; (s, - ) = solve; {Q,J (st, : ) }

Qi,t+1 (Ska ﬂ‘.t) = Qi,t (St’ ”t) T a _Ri,t+1 + 7 - eval; {Qt (St+19 : ) } = Qi,t (St’ ”t)_

m Nash-Q Learning [Hu. et al 2003] — Using Nash Equilibrium as the optima to guide agents’ policies

|. Solve the Nash Equilibrium for the current stage game

solve; {Q 1 (85 )} = Nash,; {Q.,z(Sp ' )} | _S;tes

.....................

2. Improve the estimation of the Q-function by the Nash value function. sl 8) sl gl

eval; {Q (s, -)} = Vi(s,Nash {Q (5. )})

NashQ: compute Nash for &
B the normal-form game at
flcach state o |

R T

s Nash-Q operator Z™1Q(s, a) = ES/[R(S, a) + yVyhash (s’)] is a contraction mapping.




MARL in Markov Potential Games

» Applying RL techniques to solve stochastic potential games [Mguni 2021].
o Stochastic potential games, considering state transition, are defined by
R (s, (a'a)) =R (s, (a".a™) ) = (s, (a"a) ) = (s, (a",a™) ), Vi€ [n],¥s € S
 Mguni found a dual-form MDP where the local optimum in value function corresponds
to the Markov Perfect Equilibrium (the Nash equilibrium) of SPG.

(©9)

the “value” function
(¢ can also be learned from data) BE(S) =10 Z yt¢ (St’ at) | a,~ 7|, ¥ e CS)’ Vr e 1l
L=l
Ylk (Slk’ alk, Sl,k) = ¢Zkaﬁ (Slk’ alk) I Sup E [Bl] (Slk ,>
.
: ) 2
the “Bellman Error” e ar”:gééunlek’;l <Ylk <S,k, a, Sl’k) = [[F](Slk, alk>>
1 A(ﬂk E
the “policy gradient” N & (Szk) 2 NoTl, < |Sz> Fk (Sz az)
alkNﬂkn

° One can apply Q-learning/Actor Ciritic in the dual MDP to solve for the MPE of SPG.



Complexity of Computing Nash Equilibrium

 Complexity theory 10|l — an intuitive explanation:

m Recall the NP for a decision problem as

Definition 4.2.1 (NP) A decision problem Q is in NP if there exists a polynomial time algorithm
V(I,X) such that

1. If I is a YES instance of @ then there exists some X such that |X| is polynomial in |I| and
V(I,X) = YES

2. If I is a NO instance of Q then V(I,X) = NO for all X

m But the decision problem of “is there a Nash equilibrium?” is always true proved by Nash himself.

= VWe need a new complexity class of to describe the search problems: not only do
solutions have to be verified in P-time, but also to find a solution!

m [wo-player Nash will be FNP because we can check whether Nash is true by checking the best responses.

m However, two-player Nash will not be FNP-hard. To prove that, we need to show two-player Nash is not



Complexity of Computing Nash Equilibrium

o [wo-player Nash is not FNP-complete.

m Completeness is build on the notion of

Definition 4.2.2 We say that P reduces to QQ (denoted as P <, Q) if there exist polynomial-time
algorithms A and B such that

1. A maps instances of P to instances of @),

2. If I is a YES instance of P than A(I) is a YES instance of Q, and

3. If X is a witness for A(I), then B(x) is a witness of I (if I is a YES instance) or NO (if I
is a NO instance).

= : to solve instance | of problem P, we can first find a solution of
X of A(l), which is of Q, and then use B to find a solution of B(X) of I.

" | Theorem: Two-player Nash is nhot FNP-complete

m We can proof that if two-player Nash is FNP-hard then NP=colNP (verifying “No” instance in P-time).

+ Proof by showing that if true, we can find a certificate of NO instances for SAT problems.

+ SAT problem: find alb such that “a AND NOT b” is satisfied. SAT is known to be NP-complete.
+ But, we know that NP#coNP



Complexity of Computing Nash Equilibrium

* We need a new class that has complete problems for the search tasks.

= : the class of search problems where the existence of a
solution and an algorithm to find one are guaranteed by the properties that we have seen in the Lemke-
Howson methods.

+ finite graph, vertex has at most degree 2, every source has valid solution (e.g., Nash in U, Vk)

+ A bit chicken-egg here: we want to describe the complexity of a problem, but now we say all
problems that look like this form the class of new complexity

= We know PPAD problems can always have exponential-time algorithms, but can we have P-time solutions!?

+ Short answer is we don’t know yet. Similar to we don’t know if P=NP.

+ But highly likely NO.

" | Theorem: Two-player Nash is PPAD-complete.



Complexity of Multi-Agent Learning

» Solving Nash Equilibrium is very challenging! * More complexity results of solving Nash [Shoham

m [he solution concept of Nash comes from game theory

2007, sec 4][Conitzer 2002]

but it is not their main interest to find solutions. = [wo-player general-sum normal-form game:
Compute NE — PPAD-Hard

s Complexity of solving two-player Nash is PPAD-Hard
(intractable unless P=NP).

= How to scale up multi-agent solution is open-question.

m Approximate solution is still under development.

R, (al-, a_l-) > R, (al-’, a_l-) -

Count number of N

- — #P-Hard

( heck tnigueness o

" NE — NP-Hard

Guaranteed payoff for one player — NP-Hard

Guaranteed sum of agents payoffs — NP-Hard

Check action inclusion / exclusion in NE — NP-Hard

m Stochastic game:
o (Check pure-strategy NE existence — PSPACE-Hard

e =.75 - 50 - .38 — .37 — .3393 [Tsaknakis 2008]

m Equilibrium selection is problematic, how to coordinate
agents to agree on Nash during training is unknown.

m Nash equilibrium assumes perfect rationality, but can be
unrealistic in the real world.

o Best response for arbitrary strategy — Not Turing-

computable, even can not be implemented by a Turing PC.

length.

o It holds for two-player symmetrical game with finite time



Complexity of Multi-Agent Learning

-~  NEXPTIME-hard

PSAPCE-hard
NP-hard

PPAD-hard

- Figure 1.5: Landscape of different complexity classes. Relevant examples are: 1) solving
' NE in two-player zero-sum game is P (Neumann, 1928). 2) solving NE in two-
player general-sum game 1s PPAD-hard (Daskalakis et al., 2009). solving NE
in three-player zero-sum game is also PPAD-hard (Daskalakis and Papadim-
itriou, 2005). 3) checking the uniqueness of NE is NP-hard (Conitzer and Sand-
holm, 2002). 4) checking whether pure-strategy NE exists in stochastic game
i1s PSPACE-hard (Conitzer and Sandholm, 2008). 5) solving Dec-POMDP is
NEX PTIME-hard (Bernstein et al., 2002).

Copyright: Yaodong |



What is Next!?

° We start from two-player zero-sum games, where solving Nash is P.

¢ lictitious play, double oracle, PSRO

° We look at potential games, where pure Nash exists and solving it is P.

¢ best response dynamics has polynomial bound.

¢ solving stochastic potential games through MARL.

* We move onto two-player general-sum games, where solving Nash is PPAD-hard.

¢ support enumeration, Lemke-Howson

¢ connections to MARL

+ two-player Nash is PPAD-hard, MARL Is even harder

So far, it 1s all about Nash. But 1t could be a dead-end for general cases !




MARL in Reality

what you Mum thinks what you think you are doing what you are actually doing
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII AgCntS can move in four dirC‘CtionS or Stay fiXC‘d,
An Artificial Intelligence Tries to Kill her Creator the target Is trying to reach the bottom fow.
§ B 11 MONTHS AGO O® READ TIME : 8 MINUTES 2 BY RAUL ARRABALES [3 LEAVE A COMMENT Ilf——————’—_—————t- —————————————— |
| - + > l .- :
v T1T— %1 TopRow 1—5— )
99 Agent 1 Agent2| | “Agent3
Spanish researchers discover a bot trying to kill her creator. This LI S
Artificial Intelligence, designed to fight in First-Person Shooter i BottomRow __1___1___1 __1 ___ 5
video games, was surprised while looking for a way to end the life | : i
|
of her creator in the real world. | e P - - y----- —> - '
’ Available Target
Blockers can move left/right to block the agents.

Something undescribable :) e 5 Two-player discrete-action
with high-dimensional continuous game in a grid world.

state-action space
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If multi-agent learning 1s the answer,
what 1s the question?
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“For the field to advance one cannot simply define arbitrary learning strategies, and
analyse whether the resulting dynamics converge in certain cases to a Nash equilibrium or
some other solution concept of the stage game. This in and of itself is not well motivated.”



Other Necessary Solution Concepts

» Nash Equilibrium

Definition 5.3.1 Let o; be a distribution over S; for all i € [k]. Let 0 = 01 x 09 x -+ x 0}, be the
product distribution over S defined by the individual player distributions. Then o is a mixed Nash

equilibrium if

E [c;(s)] < E [ci(s5-i,5;)]

S~O S~O

for all i € [k] and for all s; € S;.

o Correlated Equilibrium

Definition 5.3.2 Let o be a distribution over S =51 %x---xS;. Then o 1s a correlated equilibrium

if
E [ci(s)|si] < E [ci(s-i, 57)]s:]

S~O

for all i € [k] and for all s;, s, € S;.

o Coarse Correlated Equilibrium

Definition 5.3.3 Let o be a distribution over S = S1 x---x S,. Then o is a coarse correlated

equilibrium zf
E [ci()] < B [ei(s-i,50)]

S~0O

for all i € [k] and for all s; € S;.

NE C CE C CCE




Other Necessary Solution Concepts

S NE C CE C CCE

e Distinctions:

+ Nash requires a product of individual distribution:0 = 07 X 0, X -+ X 0},
o CE/CCE requires arbitrary distribution over the joint strategy set: 0 & ASlex---xSk

¢ CE:assuming a third party draw s ~ ¢, and privately tell each player his s; but not 5_; and each player

knows o, now he decides whetherh to deviate to achieve E___ [Ci (S_l-, Si’) | Si]

Yield Rus

Yield _—
¢ Inthe example of , ™54 (0, 0)

+ (yleld, rush) and (rush, yield) are Nash, but sticking to them will block one side forever.

+ but we cannot let them randomly play 507%-50%, because 25% chance they will crash !

+ Instead, we want o(yielq, stop) = o(stop, yield) = /2.

+ When the green light 1s on, we know others will yield to us. Both of us have no motivations to violate.

¢+ CCE vs CE: player needs to decide whether to deviate even before being told s..

+ |t we have no Incentive to deviate no matter what we're told, then we will not deviate even If s; Is unknown.
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Two Mainstreams of Multi-Agent Learning algorithms

Best response methods:

- Fictitious play, double oracle, PSRO series, ... ~

- Regard the opponents fixed and seek for best
responses. °

- Easily and nicely integrated with RL methods (e.g,
NFSP PSRO) .

- Work effectively In potential and zero-sum games,
but limited In genera-sum games. -

- Average policy have convergence guarantee but e
oenerally no last-iteration convergence




No-Regret vs. Best-Response Methods in Zero-Sum Games

Output: the reward (Rl, . R

Black-box multi-agent
game engine

Input:

/ HAND DEALT
TO TRAVERSER

OPPONENT )
CHECKS A

il
TRAVERSER P - ADJUST PROBABILITIES TO
EXPLORES BETTING o ; 10% CHECK MORE IN THIS
A \

SITUATION IN THE FUTURE

OPPONENT OPPONENT WOULD
BETS % HAVE RAISED

TRAVERSER \ P\. PLURIBUS EXPLORES

EXPLORES FOLDING o % ' 25% CALLING
< 75%
: X -$600 ADJUST PROBABILITIES

-$300 TO FOLD MORE IN THIS
SITUATION IN THE FUTURE

Best response based methods: StarCraft type

. When planning is feasible (game tree is
. easily accessible), existing techniques can
solve the games really well.

' Perfect-information games:
| MCTS, alpha-beta search, AlphaGO series
l (AlphaZero, MuZero, etc)

' Imperfect-information:
t CFR series (DeepCFR, Libratus/Pluribus,
 Deepstack), XFP/NFSP series

When planning is not feasible. StarCraft has 10%°
choices per time step vs. the whole tree of

chess 10°" (Texas holdem 10%°, GO 10'7Y)

Enumerating all policies’ actions at each state
and then playing a best response is infeasible.
But an approximate BR can be computed.

Solution: training a population of RL agents, treat
each RL agent as one “pure strategy’” and solve
the game in the meta-level (e.g. PSRO methods).



No-Regret vs. Best-Response Methods in Zero-Sum Games

? . When planning is feasible (game tree is

Under review as a conference paper at ICLR 2021

OPPONENT
CHECKS

Actor-Critic Policy Optimization in Partially
Observable Multiagent Environments

i
g"%% THE ADVANTAGE REGRET-MATCHING ACTOR-
OPPONENT (:j:F%JIrIWI(:j

BETS

Sriram Srinivasan®*:! Marc Lanctot™! Viniciu

srsrinivasanQ@ lanctot@ VZ3 i
Karl Tuyls' Rémi Munos'
karltuylsQ@ munos@ CT

1 : *
.- .@google.com. “DeepMind. “These autho ple in online learning, equilibrium

ent learning (RL). In this paper,
thod for no-regret learning based

N ' vior: Advantage Regret-Matching
N . wving past state-action data, AR-

Abstract

ying through them to reconstruct
hese retrospective value estimates
are used to predict conditional advantages which, combined with regret
matching, produces a new policy. In particular, ARMAC learns from sam-
pled trajectories in a centralized training setting, without requiring the
application of importance sampling commonly used in Monte Carlo counter-
factual regret (CFR) minimization; hence, it does not suffer from excessive
variance in large environments. In the single-agent setting, ARMAC shows
an interesting form of exploration by keeping past policies intact. In the
multiagent setting, ARMAC in self-play approaches Nash equilibria on
some partially-observable zero-sum benchmarks. We provide exploitability
estimates in the significantly larger game of betting-abstracted no-limit
Texas Hold’em.

Optimization of parameterized policies for reinforce
tant and challenging problem in artificial intelligenc® e o
approaches are algorithms based on gradient ascent of a score function representing
discounted return. In this paper, we examine the role of these policy gradient and
actor-critic algorithms in partially-observable multiagent environments. We show
several candidate policy update rules and relate them to a foundation of regret mini-
mization and multiagent learning techniques for the one-shot and tabular cases. We
apply our method to model-free multiagent reinforcement learning in adversarial
sequential decision problems (zero-sum imperfect information games), using RL-
style function approximation. We evaluate on commonly used benchmark Poker
domains, showing performance against fixed policies and empirical convergence
to approximate Nash equilibria in self-play with rates similar to or better than a
baseline model-free algorithm for zero-sum games, without any domain-specific

state space reductions.

e of

te
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||me,

N) LIV el U O WO the problem problem, auto-curricula.

Input: a joint strategy (7, ..., 7 INLEVNRE el T e
Best response based methods: StarCraft type



Online Learning and No-Regret

* The settings of online learning:

+ The algorithm picks a strategy p’ € Ay at time step ¢

+ The adversary/nature picks cost vector ¢’ : A — [0,1]

¢+ An action a’ is drawn from p’, and the algorithm incurs cost of ¢'(a’)

+ Full-information settings: observe the entire cost vector ¢’. Bandit settings: only observe selected c¢'(a’)

+ Oblivious adversary: ¢’ only depends on t. Adaptive adversary: ¢! depends on {t, (p', ..

LoDl

¢ Goal: we try to learn how should we adapt our algorithms, learn from mistakes [remember Alan Turing] !

° The (external) regret of a sequence of actions w.r.t action a € A:
Ri@ =3 (ZL,¢'(¢!) - I, c'@)

* A no-(external)-regret algorithm & is said to be no-regret (also Hannan consistent) if:

im7_e E |RE(a)| =

1

I

1 .

: (at)

_ T
— Z ct(a)> =0,Vae A
_ —



No-Regret Learning

° No-regret to the best action sequence ), _ min,, c'(a) in hindsight is impossible.

+ When the adversary exploits you, In hindsight a zero-loss best action sequence is always possible. If we known

¢’ before each iteration we can have mecf(a) 0, then the Fegret explod::
o

aceA

E [RZ(a)| = (Z E |c'(a')] - Z min cf(a)) — O(T) £ 6(1)

+ However, no-regret to the best action (not sequencel) in hindsight Is possible:

T T
minc/(a) vs. min Z c'(a)
e aceA aeA S

best action sequence

* |n games, no-regret is the minimal requirement for rationale.



No-Regret Learning towards Coarse Correlated Equilibrium

* |n games, no-regret is the minimal requirement for rationale.

° Recall no-regret is

5 : : T
im7_ o E R‘Q[(a) ( E t ¢! (at) — Z ct(a)> =(0,Vaec A
' ' —

° |Theorem: if all players adopt no-regret algorithms such that E[R‘Q[ (a)] L€, Vielkl,aes,,
k& t

then the average distribution ¢ = Z H— iIs an ¢—-CCE; i.e.,
=1 =

[C(S)] < E [C( Z)] e

§S~O0 §S~O

° Proof: E [Cl-(s)] —S]i[ Stk ]

§S~O0

Note that iIn game playing, we have:

cl(a)=E,__ [Ci (S—i’ a)]




No-Regret Learning in Zero-Sum Games

* We have showed that if all players play no-regret methods, they can reach a CCE.

 We can further show that no-regret players will reach the Nash in zero-sum games.

+ For better clarity. Let's assume row player chooses an action I, € { 1,...,N}, mixed strategy p, = (pl,t, ...,pNJ)

+ Column player instead of deciding ¢’, let’s assume they choose an action Je{l,.M}and q, = (ql,t, - qM,t)

¢ Assuming both players adopt no-regret algorithm regardless of what the opponent does, such that

lim sup;_, (%Z?zl s mini=1,...,N%Z?=1 el Jt)) <0

N

o Recall that the Nash value of a two-player zero-sum game is maxmin ) )" pgiZ(. )

e h

» Ve have the main theorem that

Theorem: assuming that in a two-player zero-sum game, if both players play no-regret
T N M

. . .
methods, then lim — ) 7 (It, Jt) = V = max min Z Z pqi¢ (i, j) almost surely.

T—oo I q P



No-Regret Learning in Zero-Sum Games

Theorem: assuming that in a two-player zero-sum game, if both players play no-regret
T N M

1
methods, then Iim — ) 7 (It, Jt) = V = max min Z Z piqi¢ (i, j) almost surely.
T—oo I i q p

i=1 j=1

Proof: |) we first should that regardless of what column player plays, it the row plays play no-regret methoq, his
loss will be no more than maximin value (i.e., worst case scenario to row player) limsup;_ =Y _, ¢ (I.J;) <V .

Since the row player adopts no-regret method we only need to show:

T 1 T N
. min -— £ (la J;) = Il = (2 pif(la ])) pure strategy Is a special mixed strategy
i=1,..NT p L .
=1 =1 =
ol
=min— ) 7 (p,/;)
p [
=
M 1
. 1 .
— 11111 Z (— Z 1{]=j}bﬂ(p, ])) empirical mean on column player’s action
17 o t
= —
— min I/Z <p, aT) expectation over the empirical mean of column player
P

< max, min,, £p,q) =V




No-Regret Learning in Zero-Sum Games

Theorem: assuming that in a two-player zero-sum game, if both players play no-regret
| 1 N M
methods, then lim — ) 7 (It, Jt) = V = max min Z Z pqi¢ (i, j) almost surely.

T—oo I q p

1 T
Proof: 2) we proved that i:IE.i.I.l,N?g; ¢ (i,J;) <V and since row player plays no-regret
1 n n
lim sup (— i (1 L] — min — r (LI =0
i (TZ‘ (£ 4 I (i)
we can know that

lim supT_)OO%Zthl r (It, Jt) <V

for row player, we can do the same for the column player
/i

1 .
lmnani - > 7 (It, Jt) > minmaxZ(p,q) =V
il o P g
By von Neumann's minimax theorem, we prove that
T
1 . .
hm — Y (Itv ]t) =V TI\PIWIS kr:neam.lrj;)—.regr.et playerls self-play will reach to
v o] ash equilibrium In two-player zero-sum games.

=l



No-Regret Learning in Zero-Sum Games

° VWe have showed that no-regret players will reach Nash equilibrium value.

 Furthermore, we can show that they reach to the Nash strategy.

Theorem: In a two-player zero-sum game, if both players play no-regret methods, then

/\

1 T s 1 T om e °
Pir= ? Z} 1 {I=i}» 4j1= ? Z} 1 (7=} almost surely converge to the set of Nash equilibrium.

Proof: in the previous proof, we have shown that

min (p, iiT) < V. max? (ﬁT,q) =V
p q

and due to the uniqueness of V value In zero-sum games

minZ (p, ;) = max? (pr.q) =V
p q
and because of

f(ﬁTa GT) = minf(p, GT), maxf(ﬁT,q) = LZ(ﬁTs il\T)

finally, we prove that




Fictitious Play is Not No-Regret

 No-regret can lead to CCE in general-sum, NE in two-player zero-sum.

» But, what exactly is a no-regret algorithm? How can we behave to achieve no-regret!?
; 1 n : 1 n :
lim sup;_, ., (; thl £ (It, Jt) - mmi:l,...,N;Zt:l 4 (z,L)) <0

o Surprisingly, Fictitious play is not no-regret !

+ Recall that fictitious play, also known as Follow-the-Leader, is to take the best response to the average

cumulative loss. i
e ?rgmlg(t_l 30 f(z J))

¢ Consider NV = 2 actions, let J, be chosen such that 7(1,J,) = (1/2,0,1,0,1,...) and £(2,J,) = (1/2,1,0,1,0....)
+ Then the accumulative loss for both actions is T/2, and the FP will suffer a loss of T, thus has constant regret.

¢ There are many variants that make FP no-regret, for example

- . |
I, = argmin (t : Z A Zi,t>, Z. any i.i.d random vectors of size N
= U s



No-Regret Algorithms: MVWU

 Fictitious play is not no-regret !

e Let’s introduce a true no-regret algorithm: Multiplicative Weight Update [Freund 1999].
+ MWU has many names:

exp< nzt_ £(1, J))
pl,t Z|A| exp( Zr— Lﬂ( )>

» Equivalently, one can think of the following iterative process:

Wt

Oy — w'l(@) = wi(a) - exp( — nt(a, Jt)),wl(a) =1Yae i

ZczeA Wt(a) ,

m | arge 7 means more exploitation, small # means more exploration.

+ Equivalently, one can get MWU by the following maximum entropy framework (a common trick in RL).

arg min Z(p,J) + 1/n- ) p;logp,

pEAlAI



No-Regret Algorithms: MVWU

o Let’s introduce a true no-regret algorithm — Multiplicative VWeight Update.

+ Equivalently, one can get MWU by the following maximum entropy framework (a common trick in RL).
exp< nz_lf(l J)>
A -

> exp (-n Xl 2 (kJ))

oegwn LeP . Js) + 1) b boP:

arg min Z(p,J) + 1/n - 2 p.logp. =
PEA ;

= X Pr i) Ts) -3 Pi P

= YysPi (9-Lei, Ts) + 1y pr)

= Iy E L lgop (§-10i,5) +l9P)

~ ) EyL-legeq 1) -Lii.Ts)) £ (6 B

=) 5T 1 espc—on,u,:ts)J
P:”= ep (=) - L1+, TP)) to minimide

Therefre. P = ep(-)-LG,3)) /S ep 1) i, 1)




No-Regret Algorithms: MVWU

o Let’s introduce a true no-regret algorithm — Multiplicative Weight Update.

Wt

e ZaeA e w'l(@) = wi(a) - eXp( — n¢'(a, Jt)),wl(a) =1 Vac

o Let’s now show MWU is indeed a no-regret method

1 T
o Let opt = mmz f a, J and v = Z pfa) - £(a, J,), thus the regret-bound is lim — (Z p!— opt)

€A 7 T
; alA| e

+ We first bound the denumerator Z wi(a) > w'(a*) = exp(—n - opt)
i > (1 - €)™

D wtl@) = ) wia) - exp( —nt(a,J)) : wa(a) (1 — e)?@l)
< Z w(a) - (1 — e(a, J,)) =

w'(a)

a
e Z Wt(d) ; (1 i €Vt) definition of v/ = Z Z W@ -Z(a,J,)

acl|A|




No-Regret Algorithms: MVWU

° Regret bound of MWU

o Let opt = mmz f a, J and v’ = Z pfa) - £(a, J,), thus the regret-bound is L <th:1 pl— Opt)

7
T a€|A|
+ Merge the upper and lower bound in the last slides

(1 — )Pt < Z wia) < Z wl(a)H(l —evl) = |A] H(l — ev)

a€eA

opt - In(1 —¢) < In|A| + Zln(l — ev')
—

Opt . ('—6 = 62) = In ‘A ‘ = Taylor expansion In(1 — x) = — x — x%/2

¢ Set € = \/ln |A |/T we conclude the proof

Note: the log

L& 1 1 1 In|A] -
r o - . term Is great for
T( E V 0pt>§—T (€T+€ln\A\> ——T(\/TlnlA\ +\/T1n\A\)S2\/ = > () many realworld

=1 problems!




No-Regret Algorithms: Online Double Oracle

Online Double Oracle

Le Cong Dinh*!-2, Yaodong Yang*-1'4, Nicolas Perez-Nieves?, Oliver Slumbers?,

Zheng Tian®*, David Henry Mguni', Haitham Bou Ammar', Jun Wang'+4

|. Nash is unexploitbale, but when a player always plays Rock, you should play Paper rather than (1/3, 1/3, 1/3).

2. Double Oracle/PSRO assumes both players play the worst-case scenario, can be too pessimistic during training.

3. Online learning provides a framework about how to exploit opponents through minimising regret.

Algorithm 1 Double Oracle (McMahan et al., 2003)

I: Input: A set I, C strategy set of players
2: Ilp, Co: initial set of strategies

3: fort =1tooodo

4: if Ht 7é Ht—l or Ct 75 Ct—l then

5: Solve the NE of the subgame G:

. T ' ' .
(7}, c}) = arg MilgeA,, arg MaXeeAs, T Ac

6: Find the best response a;11 and ¢;11 to (7], ¢} ):
Qi1 = arg Milg ey aTAc:tk
Ci11 = arg MaXeco w{TAc

7: Update I1; 11 = IL;U{ass1}, Cii1 = CrU{csa1}

8 else if II; = II;_{ and C}; = C;_1 then

0: Terminate

10: endif

11: end for

What we want:
it opponents play €y, €5, . . ., €1, we want the player to have @y, &,, . .., Ty st

R, L
lim — =0, R;= max E x'Ac,— ' Ac
T co I . nEA i ( t t t)

What we know:

hedge algorithm/multiplicative welight update can achieve no-regret property
it one follows the below update

exp (— ,utaiTAct>
741 (0) = ()= . ViE[n]
-t : zizl ﬂt(l)e)(p (_/’ttal Act)

the regret of MWU is @(\/ log(n)/T)




No-Regret Algorithms: Online Double Oracle

. . T A else if II; # II;_, then
(7, €;) = argMingeay, ATgMaXeeAg, T AC Start a new time window 7}, and

6: Find the best response a;, 1 and ¢;1 to (7], ¢} ): Reset 7r; = [1/|1'[t|, e 1/|1'[t|], I =0

Algorithm 1 Double Oracle (McMahan et al., 2003) Algorithm 2: Online Single Oracle Algorithm
I: Input: A set 11, C strategy set of players 1: Input: Player’s pure strategy set 11 -
2: IIy, Cy: initial set of strategies 2: Init. effective strategies set: Il = II; = {a’},a’ € 1I
: 4. if II; = II;_, then
4. if II; # 1I;—1 or C} # Cy_1 then . : o : :
5: Solve the NE of the subgame G: 2: Compute 7r¢ by the MWLU in Equation (5)
7:

@i 1 = argmingena' Act 8: endif
Ci+1 = arg MaXeec 7, T Ac 9:  Observe l; and update the average loss in 7;:
I Update II; 1 = II;U{@a¢4+1}, Cry1 = CrU{cis1} =) et Ly /| T3 )
8: elseif II, = II;_; and C; = C;_4 then 10:  Calculate the best response: a; = arg ming e (m, 1)
0- Terminate 11:  Update the set of strategies: II;, 1 = II; U {a;}
10: end if 12: end for

Intuition: maintain a time window T to track opponent's strategy, if

no new best response can be found, then keep exploiting, otherwise
refresh the time window to catch up with the latest change




Algorithm 2: Online Single Oracle Algorithm

1: Input: Player’s pure strategy set I1 . .
2: Init. effective strategies set: Il = II; = {a’},a’? € II

No-Regret Algorithms: Online Double Oracle

4
5 Compute 7r; by the MWU in Equation (5)
6: elseif IT; # II;_; then
7.
8
9

Start a new time window 75 ; and

Reset 7, = [1/|IL],.. ., 1/|IL]], T=0
: endif
:  Observe l; and update the average loss in 7;:
1 1 =2 ver, U/ITil
I - O S O I S a n O = reg ret a Igo rlth m ° 10: Calcul;teeq;hé best response: a; = arg minxer (7, i}

11:  Update the set of strategies: IT;,; = IT; U {a;}
12: end for
13: Output: 7, II1

Theorem 4 (Regret Bound of OSO). Let lq,1o, ...l be a sequence of loss vectors played by an

adversary, and (-, -) be the dot product, OSO in Algorithm 2 is a no-regret algorithm with

1 /— & klog(k
F (3 (e~ mig 3™ (1) < VR

where k = |Il7| is the size of effective strategy set in the final time window.

2.Putting OSO into self-play settings, we get Online Double Oracle which can solve Nash.
¢ Recall that in two-player zero-sum game, if two no-regret methods self play, the outcome will leads to a Nash equilibrium!

¢ We just prove that.

Algorithm 3: Online Double Oracle Algorithm Theorem 5. Suppose both players apply OSO. Let k1, ko denote the size of effective strategy set for
each player. Then, the average strategies of both players converge to the NE with the rate:
1: Input: Full pure strategy set II, C
2: Init. effective strategies set: Iy = II;, Cy = C1 o \/ k1log(k) N \/ k2 log (ko)
3: fort =1toTdo T 2T 2T
4. Each player follows the OSO in Algorithm 2 with In situation where both players follow OSO with Less-Frequent Best Response in Equation (6) and
their respective effective strategy sets I1;, C; 0l = =/t —
5: end for
5. Output: 7. I, ¢ o \/ ki log (k1) \/ kylog(ks) | VEi+ Vks
2T 2T VT




Exploitability

Exploitability

Exploitability

No-Regret Algorithms: Online Double Oracle

3-Move Parity Game 2 5.4-Blotto AlphaStar Connect Four

: ;Z w====_Online Double Oracle -— Online Double Oracle ) ; b:wlline Double Oracle === Online Double Oracle
w— Fictitious Play w—— Fictitious Play = Fictitious Play w— Fictitious Play

o w— Multiplicative Weights w— Multiplicative Weights ) w— Multiplicative Weights = Multiplicative Weights
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Figure 1: Performance comparisons under self-plays
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No-Regret Algorithms for Correlated Equilibrium

° No-(external)-regret players can lead to CCE in multi-player general-sum games, and

Nash in two-player zero-sum games.

* The last missing piece: how about correlated equilibrium?

Definition 5.3.2 Let o be a distribution over S =51 %x---xS;. Then o s a correlated equilibrium
if
E [ci(s)|si] < E [ci(s-i, 57)]s:]

S~O

for all i € [k] and for all s;, s, € S;.

e We can also define CE through a switching function (play action b when | plan to play a)

Theorem 7.3.2 o is a correlated equilibrium if and only if for all i € [k] and §: S; - S, {b ifr=aq
0(z) =

S:NEG[CZ'(S)] < S]E)G[Ci(s_i,é(si)]. (731) T Otherwise

+ =:if a CE, then any switching will incur large cost
¢ = e can rewrnite (/.3.1) Into Lies, <Pr si=x] - E |C() 5= x]> =N (Pr si=x] - E [Ci (S—i"s (Si)> s x])
[Si =

Pils=d E [0 1s=d <Prs=d - E [Gsb) 15=4]

S~O0 S~O0

— E [Ci(s) = a] < E [Cl- (S_l-,b> [ — a]

S~O0 S~O0



No-Regret Algorithms for Correlated Equilibrium

 We can also define CE through a switching function (play action b when | plan to play a)

Theorem 7.3.2 o is a correlated equilibrium if and only if for all i € [k] and §:S; = S;,
]5) [CZ(S)] < ]? [CZ(S_Z,(S(SZ)] (731)

 We removed the condition requirement of CE at the price of switching function.

 Best action in hindsight is equivalent to a switching function that maps a’ — a*.

» The new definition relates to swap-regret: best action sequence
in hindsight

Definition 8.2.2 The swap regret of a sequence of actions a',a?,. .., ab with respect to a switching

function d : A - A 1is

1 T T
1) - 1 (L) - L)

 No-(swap)-regret implies no-(external)-regret. Not the other way round.

°* To remember: no internal regret — CE, no external regret — CCE.



No-Regret Algorithms for Correlated Equilibrium

° For algorithm &, the expected swap regret w.rta o : A — A is defined by

sls7o) =3 (5L 8, [¢ @] - 2L 8 [¢ (610

d~p L

+ Compare to external-regret E|[r(a)] = (Z E [ct (a') ] —Zc%a))

—

» No-swap-regret means lim E[S‘Qf (0)] =0, Vo.

1— o0

o
1 t

then the average distribution ¢ = Z H— Is an ¢—CE;, I.e.,
=1 =}

S~O0

5 PI"OOf: s~Q [C (S)] - [C QIO ot that c'(a) = E,_ [C; (5_.a)]
B %Zle azl::pt [Ct (at)] = %Zszl agpr

= E[S; (O] < e

Theorem: if all players adopt no-swap regret algorithms s.t. E[S‘Q{i(é)] <e, Vielk],Vo,
E [C(s)| < E |C(5_;6(s)




No-Swap-Regret Algorithms for Correlated Equilibrium

» | Theorem: if all players adopt no-swap-regret algorithms s.t. E[S;f[ 0)] <e, VieEelk],Vo,
Ik t : :
then the average distribution ¢ = Z Hp—zi is an ¢~CE, i.e., E [C((s)] < E |G (s_;(s))

S~OC
==

+ €

 The goal is then to develop no-swap-regret algorithms like MWU for external regret.
* In turns out we can transform no-external-regret algorithm into no-swap-regret.

+ The idea: for each action, maintain a no-regret algorithm g/ such as MWU
+ Let different no-regret algorithm (qj, . . ., g;,) reach a consensus p’ (see how later).

¢ ‘“Lie” to each no-regret algorithm the loss of p'(i)c’(i) instead of ¢'(i).
° The goal of no-swap-regret is then written as

L on Ln
=3 YD — = X D PO E0) = o)

| 1



No-Swap-Regret Algorithms for Correlated Equilibrium

° The goal of no-swap-regret is then written as

e Z Zpt(l)cf(l)—— Z Zpt(l)ct(é(z)) = oty

t—l i =1
° Because for each action, we malntain a no-regret algorithm, thus we have

- Z Z qjt(l) t(])ct(l ol Zpt(])ct(é(])) < R] (5(])) =IO i is because no regret w.rit 0(J)

t_l =1 the cost that Is lied playing 6(j) in hindsight
and internal regret Is always

smaller than external regret

 Sum over n = |A| will not influence the total regret, since no 7T term is involved.

%Z; : 27 RHOIAW, Ct(l))__zt_ ZJ P'(Nc6()) < ZJ R} (5(7)) = o(1)

» Recall g; ‘(i) is the probability that the j-th no-regret algorithm pick the i-th action. If we

make p'(i) = Z q;(Dp'()), then we use the above equation prove no-swap-regret.
j=1






