
MULTI-AGENT LEARNING BASICS

Dr. Yaodong Yang
Assistant Professor

King’s College London
www.yangyaodong.com

08/2021

Reinforcement Learning China Summer School

RLChina 2021

http://www.yangyaodong.com

Intelligence is learning from mistakes!

“… if a machine is expected to be infallible, it cannot also be intelligent.
There are several mathematical theorems which say almost exactly that.
But these theorems say nothing about how much intelligence may be

displayed if a machine makes no pretence at infallibility…”

 — Alan Turing, 1947

Remarkable Success of MARL in Gaming AI Applications

Jan 2016 Dec 2017

AlphaGO Series

July 2018

Capture-the-flag (DeepMind)

Jan 2019 Apr 2019 July 2019 Sep 2019

AlphaStar (DeepMind)

Dota2 (OpenAI)

Pluribus Poker (FAIR)

Hide and Seek (OpenAI)

Great advantages have been made since 2019!

XLand (DeepMind)

July 2021

⋯
Multi-agent intelligence emerges

Multi-agent Intelligence Components

Multi-Agent Intelligence

Algorithmic Game Theory Fundamentals

||

+

Machine Learning Techniques
Reinforcement Learning

Deep Learning
Auto-differentiation

…

Equilibrium/Solution Concept
Learning Dynamics Analysis

Mechanism Design
…

Autonomous Driving
Gaming AI

Smart Grid / City
…

Game Theory Lays the Foundation for Multi-agent Learning

∥∇f(x)∥2 = 0

Normal machine learning problems: Multi-agent learning problems:

the learning outcomes are
described by game theory

Rock Paper

Scissor

Recommended Resources:

A self-contained MARL survey from game theoretical perspective:

https://arxiv.org/abs/2011.00583

Textbook

<Prediciton, learning and games> Nicolo Cesa-Bianchi

Algorithmic Game Theory lectures:

http://www.cs.jhu.edu/~mdinitz/classes/AGT/Spring2020/
 (Uncited screenshots refer to Lectures 1,2,3,4,5,6,7,8,9)

If you want to know more details about modern MARL methods

Talk: A General Solver to Two-player Zero-sum Games

Talk: Recent advances of MARL in Gaming AI

Talk: Dealing with Non-transitivity in Two-player Zero-sum Games

If you want to get hands to solve real-world games, e.g., Poker/Chess

https://github.com/sjtu-marl/malib

https://arxiv.org/abs/2011.00583
http://www.cs.jhu.edu/~mdinitz/classes/AGT/Spring2020/
https://www.techbeat.net/talk-info?id=501
https://www.bilibili.com/video/av969218959/
https://app6ca5octe2206.pc.xiaoe-tech.com/detail/v_6104f27fe4b0cce271b8321e/3?fromH5=true

Contents

Algorithmic Game Theory Overview

Computing Nash Equilibrium

Two-Player Zero-Sum Games (LP, fictitious play, double oracle, PSRO)

Two-Player General-Sum Games (support enumeration, Lemke-Howson method)

N-Player Potential Games (best response dynamics)

Connections to MARL

MARL Formulations

Complexity Results (Nash is PPAD-hard)

Other Necessary Solution Concepts (correlated equilibrium, coarse CE)

No-Regret Dynamics

Solving Coarse Correlated Equilibrium

Solving Two-Player Zero-Sum Games (FP is not no-regret, MWU, ODO)

Solving Correlated Equilibrium (swap regret)

Algorithmic Game Theory Overview

Game theory studies the interaction between rationale (selfish) agents.

It is an area between CS and Economics.

MARL is to study algorithmic games theory with powerful machine learning tools.

1.Computing Equilibria

• Is it reasonable to model behaviours through different equilibrium concept (e..g, the “invisible hands”)

• how can we compute the equilibrium efficiently and distributedly ?

2.Understanding the Inefficiency of Equilibrium

• Is the equilibrium “optimal” compared to maximal social welfare ?

• bounding and deriving the distance to optimality

3.Mechanism Design

• The science of “rule making”: can we design games so that selfish agents can lead to good outcomes ?

• Heavily focus on auctions: how to design the auction rules to incentivise agents to tell the truth.

Computing Equilibria

When the drivers are rational, they will reach the outcome of a Nash Equilibrium.
It is the outcome of interaction. Knowing it can predict future.

Real-world decision making has cooperation & competition. For each agent, how
to infer the belief of the other agents and make the optimal action is critical.

The concept of using traffic light is in fact a correlated equilibrium.

Many-agent system is when agents >> 2. It is a very challenging problem to
compute equilibrium, thus making decisions.

(0, 0) (1, 2)
(2, 1) (0, 0)

Yield

Rush

Yield Rush

normal-form gamescenario

Traffic intersection is naturally a multi-agent system. From each driver’s perspective, in order to perform the
optimal action, he must take into account others’ behaviours.

Two-player game
per time snapshot

𝒜1

𝒜2

what the computer sees

what you see

The Inefficiency of Equilibria

optimal traffic: half s->v->t, half s->w->t
cost per person: 1+1/2

optimal traffic: all goes s->v->w->t
cost per person: 2

price of anarchy:
value of worst Nash
optimial outcome

=
2

3/2
≥ 1

Selfish behaviours can lead to inefficient equilibrium ! Can we bound them for real-world problems?

Mechanism Design

Suppose we are to organise an auction, each player’s utility is set as (valuation - final price) , how can we set the

auction rule: the mechanism of determining the final price? We want it to be truthful that all players bids their valuations.

Highest price auction:

Each player will bid less than valuation, if he wins the bids, he will try to decrease the price.

The final price depends on others’ valuations. It is unclear for both players and auctioneer to practice

Second-price auction:

Player bids the valuation price is the dominant strategy. Assuming to be the highest price.

• if , then 0 utility is better than negative, thus bidding

• if , bidding is the always dominant than bidding other numbers.

In many real-world problems, how can we design truthful mechanism that meets computation constraint.

See Zhengyang’s talk at RLChina for this topic.

+

bj

vi < bj vi

vi > bj vi

Contents

Algorithmic Game Theory Overview

Computing Nash Equilibrium

Two-Player Zero-Sum Games (LP, fictitious play, double oracle, PSRO)

Two-Player General-Sum Games (support enumeration, Lemke-Howson method)

N-Player Potential Games (best response dynamics)

Connections to MARL

MARL Formulations

Complexity Results (Nash is PPAD-hard)

Other Solution Concepts (correlated equilibrium, coarse CE)

No-Regret Dynamics

Solving Coarse Correlated Equilibrium

Solving Two-Player Zero-Sum Games (FP is not no-regret, MWU, ODO)

Solving Correlated Equilibrium (swap regret)

Nash Equilibrium

Let players, is the joint strategy profile, is the utility function, Nash equilibrium isn S = S1 × ⋯ × Sn ui : S → ℝ

E
sj∼μj

E
∀j∈[n]

[ui (s1, …, sn)] ≥ E
si ∼ μ′

i
s−j ∼ μ−j

[ui (s1, …, sn)] ∀μ′ i ∈ ΔSi

xT Ay =
N

∑
i=1

M

∑
j=1

Aijxiyj

=
N

∑
i=1

M

∑
j=1

AijPr[player 1 plays i]Pr[player 2 plays j]

= E
i ∼ x
j ∼ y

[ui(i, j)]

Mixed strategy Nash equilibrium always exists in finite player finite action games.

For continuous utility games, the strategy set needs to be compact

Note that can be replaced by because deviation is at most a pure strategy !

Here no state transitions are considered. In Markov game, the solution concept is Markov Perfect Equilibrium.

The expectation is computed as follows

μ′ i ∈ ΔSi
a ∈ Si

von Neumann theorem: Two-player Nash can be computed in P-time through linear programmes (LP).

The is the Nash value
proof: due to definition of , due to being the LP solution.
corollary: all Nash value are the same (saddle point is unique in bimatrix game).

The (p, q) is the Nash equilibrium:
proof: suppose the player plays instead of

, , thus no incentives to deviate.

Sion’s minimax theorem generalises to quasi-convex/concave functions .

v*
v ≤ v* v* v ≥ v*

x, y p, q

xT Aq =
N

∑
i=1

xi(Aq)i ≤ max
i∈[N]

(Aq)i = vc = v* pT Ay =
M

∑
j=1

(pT A)j
yj ≥ min

j∈[M]
(pT A)j

= vr = v*

Nash Equilibrium in Two-Player Zero-Sum Games

Prime problem

max
v∈ℝ

v

 s.t. p⊤A ⪰ v ⋅ 1
p ⪰ 0 and p⊤1 = 1

min
v∈ℝ

v

 s.t. q⊤A⊤ ⪯ v ⋅ 1
q ⪰ 0 and q⊤1 = 1

Dual problem Minimax theorem

max
p

min
q

p⊤Aq
= min

q
max

p
p⊤Aq

/

row player maximises the worst situation column player’s view zero-duality gap for convex problems

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y)

Maintain a belief over the historical actions that the opponent has played, and the
learning agent then takes the best response to this empirical distribution.

It guarantees to converge, in terms of the Nash value, in two-player zero-sum games,
potential games and games , and, the average policy converge to the Nash strategy.

Examples:

2 × 2

Fictitious Play [Brown 1951]

at,*
i ∈ BRi(pt

−i =
1
t

t−1

∑
τ=0

ℐ {aτ
−i = a, a ∈ 𝔸})

(1/2, 1/2) (1/2, 1/2)∞

pt+1
i = (1 −

1
t)pt

i +
1
t

at,*
i , for all i

Double Oracle best responds to the opponent’s Nash equilibrium at each iteration.

To solve the game by solving subgame Nash because not all pure strategies are “useful” in the
support of Nash.

It is much faster than LP, but In the worst-case scenario, it recovers to solve the original game.

Double Oracle [McMahan 2003]

iteration 0: restricted game R vs R

iteration 1:

 solve Nash of restricted game
(1, 0, 0) , (1, 0, 0)

 unrestricted = P, P

iteration 2:

 solve Nash of restricted games

 (0, 1, 0) , (0, 1, 0)

 unrestricted = S, S

iteration 3:

solve Nash of restricted game

 (1/3, 1/3, 1/3) , (1/3, 1/3, 1/3)

iteration 4: no new response, END

output (1/3, 1/3, 1/3)

Br1, Br2

Br1, Br2

example

It guarantees to converge to Nash equilibrium in two-player zero-sum games.

We need to prove that early stopping also leads to Nash equilibrium.

Convergence proof:

DO finally recovers to solve the whole game

Correctness proof:

suppose DO stops at the j-th sub-game (i.e., no new best responses are added)

Double Oracle [McMahan 2003]

∀p, V(p, qj) ≥ v ⇒ ∀p, max
q

V(p, q) ≥ v

∀q, V(pj, q) ≤ v ⇒ max
q

V(pj, q) ≤ v
⇒ ∀p, max

q
V(pj, q) ≤ maxq(p, q)

 must be the minimax optimal,
 vice versa, so () is the final Nash

pj
qj pj, qj

A generalisation of double oracle methods: the best
responser is implemented through deep RL models.

Each RL model is now a “pure strategy”.

A meta-game is where is the

set of policies for each agent and is the
reward values for each agent given a joint strategy profile.

 is distribution over , a.k.a meta-strategy

PSRO generalises all previous methods by varying .

independent learning:

self-play:

fictitious play:

PSRO:

(Π, U, n) Π = (Π1, . . . , Πn)
U : Π → ℝn

σ−i (Π0
1, . . . , ΠT

1)

σ−i

σ−i = (0,...,0,0,1)
σ−i = (0,...,0,1,0)

σ−i = (1/T,1/T, . . . ,1/T,0)
σ−i = Nash(ΠT−1, U)

Policy Space Response Oracle [Lanctot 2017]

expand the
payoff matrix

solve the new
meta game

compute the best response

select opponent policies

augment strategy pool

Game Environment G ∼ P(G)

… "#$(πT, ΦT(θ))%t

&(ϕ1, ϕ2)
||

%t

(Neural) Meta-Solver fθ(%t) π ϕBR

N×N
MLP

Column
Mean-Pooling

Row-wise
Concatenation

N×128

MLP
N×64

Global Info
64

N×1
MLP

Row
Mean-Pooling

πt+1

%t+1

Forward Pass

ΦT = {ϕ1, ϕ2, …, ϕT}

%T
Φt = {ϕ1, ϕ2, ϕ3}

Best Response Oracle

ϕBR = max
ϕ

t−1

∑
k=0

πk&(ϕ, ϕk)
ϕBR

Φ2 = {ϕ1, ϕ2}

ϕBR

PSRO on Google Football !

make offside

https://sites.google.com/view/diverse-psro/

push and run

Exponential-time algorithms are the best we can hope for.

Support Enumeration Method:

Proof: if , then must be best response, otherwise suppose it will contradict

 if is a best response, then

xi > 0 xi (Ay)i < max
k∈[N]

(Ay)k

xi xi > 0

Two-Player General-Sum Games

xT Ay =
N

∑
k=1

xk(Ay)k = xi(Ay)i + ∑
k≠i

xk(Ay)k

< xi max
k∈[N]

(Ay)k + ∑
j≠i

xj max
k∈[N]

(Ay)k

= xi max
k∈[N]

(Ay)k + (1 − xi) max
k∈[N]

(Ay)k = max
k∈[N]

(Ay)k

xT Ay =
N

∑
i=1

xi(Ay)i = ∑
i:xi≠0

xi(Ay)i = ∑
i:xi≠0

xi max
k∈[N]

(Ay)k = max
k∈[N]

(Ay)k ∑
i:xi≠0

xi = max
k∈[N]

(Ay)k

Theorem: a best response has to be a pure strategy that satisfies
 , that is, is a best response to if only if has nonzero

probability only on pure strategies that max expected utility against .

xi > 0 ⟹ (Ay)i = max
k∈[N]

(Ay)k x y x

y

Support Enumeration Method:

we can have a guess of the Nash support (I, J) and then propose the Nash by solving the following LP

Given the proposal () we can then check if and are met. x, y u = max
k∈[N]

(Ay)k v = max
k∈[M]

(xTB)k

Two-Player General-Sum Games

∑
i∈I

xi = 1

∑
j∈J

yj = 1

∑
i∈I

xiBij = v ∀j ∈ J

∑
j∈J

Aijyj = u ∀i ∈ I

size of ,
solved by Gaussian elimination

| I | + |J | + 2

Theorem: a best response has to be a pure strategy that satisfies
 , that is, is a best response to if only if has nonzero

probability only on pure strategies that max expected utility.

xi > 0 ⟹ (Ay)i = max
k∈[N]

(Ay)k x y x

Support Enumeration Method is more like a heuristic search.

Here we provide a formal formulation through linear complementarity problem (LCP)

LCP is very much like an LP, but with a new constraint built on a slack variable.

Recall that in two-player zero-sum game, we can have

minimize U*1

 subject to ∑
k∈A2

u1 (aj
1, ak

2) ⋅ sk
2 ≤ U*1 ∀j ∈ A1

∑
k∈A2

sk
2 = 1

sk
2 ≥ 0 ∀k ∈ A2

 minimize U*1

 subject to ∑
k∈A2

u1 (aj
1, ak

2) ⋅ sk
2+r j

1 = U*1 ∀j ∈ A1

∑
k∈A2

sk
2 = 1

sk
2 ≥ 0 ∀k ∈ A2

r j
1 ≥ 0 ∀j ∈ A1

⇔

LCP formulation of Two-Player General-Sum Games

LCP formulation of Two-Player General-Sum Games

Solving the Nash of two-player general-sum games is an LCP problem.
Both two players’ variables need to be considered rather than one player (unlike two-player zero sum!)
There is no objective, it is rather a feasibility program (finding the solution that meets the conditions).
The last complementarity condition that prevents unbounded is non-linear, turn LP into LCP.
If an action is played , it has to be a best response: , otherwise it can just deviate to reach

U*, V*
xj > 0 r j

1 = 0 V*

∑
k∈A2

A (aj
1, ak

2) ⋅ yk + r j
1 = V* ∀j ∈ A1

∑
j∈A1

B (aj
1, ak

2) ⋅ xj + rk
2 = U* ∀k ∈ A2

∑
j∈A1

xj = 1, ∑
k∈A2

yk = 1, xj ≥ 0, yk ≥ 0 ∀j ∈ A1, ∀k ∈ A2

r j
1 ≥ 0, rk

2 ≥ 0 ∀j ∈ A1, ∀k ∈ A2

r j
1 ⋅ xj = 0, rk

2 ⋅ yk = 0 ∀j ∈ A1, ∀k ∈ A2

mutual best response

valid prob. distirbution

complementarity condition

slack variables

Solving the LCP problem through Lemke-Howson:

A classical algorithm that combines game theory, convex analysis and graph theory
Non-degenerate games: for a pure strategy, there can only be at most one best response.
Non-degenerate games have the same Nash support size for both players: .
Consider polyhedron: and

These polyhedra describes the space of mixed strategies with an upper bound on the best response value
from the other player will react.

Consider the (bounded) polytope: and .

Setting is generic, there exist bijective mappings between and

We are interested in the graph that are composed by the corner points of , because
it either means is either in Nash support, or column is a best response to .

|p* | = |q* |
P = {(u, x) ∣ xi ≥ 0,∑ xi = 1,xTB ≤ u ⋅ 1} Q = {(v, y) ∣ yj ≥ 0,∑ yj = 1,Ay ≤ v ⋅ 1}

P̄ = {x ∣ xi ≥ 0,xTB ≤ 1} Q̄ = {y ∣ yj ≥ 0,Ay ≤ 1}
U* = V* = 1 P, Q P̄, Q̄

P̄, Q̄
xi j x

Lemke-Howson Method

L(x) = {i ∣ xi = 0} ∪ {j ∣ (xTB)j
= 1} L(y) = {j ∣ yj = 0} ∪ {i ∣ (Ay)i

= 1}

Lemke-Howson Method Example

<Multiagent Systems: Algorithm, Game Theoretic and Logic Foundation, page 95>

L(x) = {i ∣ xi = 0} ∪ {j ∣ (xTB)j
= 1} L(y) = {j ∣ yj = 0} ∪ {i ∣ (Ay)i

= 1}

Solving the LCP problem through Lemke-Howson:

We are interested in the graph that are composed by the corner points of , because it either means is
not in Nash, or opponent’s column is a best response to . Let’s label those corner points by the constraint id:

Proof: : if () is a Nash, then is either , thus , or, is a best response to ,
and thus . Therefore, every label appears only once in , so .

 : if , by definition, we can know that the following set is a Nash.

Intuition: finding Nash is just find vertices of that contains all of the labels.

P̄, Q̄ xi
j x

⟸ x, y xi 0 i ∈ L(x) (Ay)i = 1
i ∈ L(y) L(x) ∪ L(y) L = L(x) ∪ L(y)

⟹ L = L(x) ∪ L(y)

P̄, Q̄

Lemke-Howson Method

L(x) = {i ∣ xi = 0} ∪ {j ∣ (xTB)j
= 1} L(y) = {j ∣ yj = 0} ∪ {i ∣ (Ay)i

= 1}
Theorem: a pair () is a Nash equilibrium if and only if there are completely labelled: x, y L(x) ∪ L(y) = M + N

({i ∈ [N] :
M

∑
j=1

yjAij = 1} (i ∈ L(y)), {j ∈ [M] :
N

∑
i=1

xiBij = 1} (j ∈ L(x)))

Lemke-Howson Method

<Multiagent Systems: Algorithm, Game Theoretic and Logic Foundation, page 95>

Theorem: a pair () is a Nash equilibrium if and only if there are completely labelled: x, y L(x) ∪ L(y) = M + N

L(x) = {i ∣ xi = 0} ∪ {j ∣ (xTB)j
= 1} L(y) = {j ∣ yj = 0} ∪ {i ∣ (Ay)i

= 1}

Lemke-Howson Method:

Intuition: finding Nash is just find vertices of that contains all of the labels.

In order to find the completely labelled pairs (the Nash), we define:
, with vertices .

Edge of

 for each

Let’s focus on the subgraph in that is almost fully labelled but only lack the label

For , we write for the subset of vertices except .

Intuition: Nash equilibrium in has degree only equal to .

Nash is exactly , so are in .
Since Nash is a fully labelled point and , thus Nash in can only have degree (either best response
or not in the Nash support, cannot have both !).
In , the degree of every other vertex apart from Nash have degree 2 (both in and).

An effective algorithm: walk along the edges in , and drop the nodes with degree of 2.

P̄, Q̄

G = G1 × G2 v = (v1, v2) where v1 ∈ V (G1) and v2 ∈ V (G2)
E(G) = {(v1, v2), (v′ 1, v2) ∈ G × G : if (v1, v′ 1) ∈ G1} ∪ {(v1, v2), (v1, v′ 2) ∈ G × G : if (v2, v′ 2) ∈ G2}

L(v) = L (v1) ∪ L (v2) vertex v = (v1, v2) ∈ V(G)

G k

k ∈ M ∪ N Uk = {v ∈ V(G) ∣ L(v) ⊇ M ∪ N \{k}} k

Uk 1
M ∪ N Uk ∀k

L(v1) ∩ L(v2) = ∅ Uk 1

Uk G1 G2

G

Lemke-Howson Method

Lemke-Howson Method

<Multiagent Systems: Algorithm, Game Theoretic and Logic Foundation, page 95>

Theorem: a pair () is a Nash equilibrium if and only if there are completely labelled: x, y L(x) ∪ L(y) = M + N

L(x) = {i ∣ xi = 0} ∪ {j ∣ (xTB)j
= 1} L(y) = {j ∣ yj = 0} ∪ {i ∣ (Ay)i

= 1} Start: (0,0,0) (0,0)

(0,0,0) (0,1,0), drop , pick → a2
1 a2

2

(0,0) (0,1), drop , pick → a2
2 a1

1

(0,1,0) (2/3,1/3,0), drop , pick → a1
1 a1

2

(0,1) (1/3, 2/3), drop , pick → a1
2 a1

1

Terminate: because now we have
{ } { } fully labelleda3

1 , a1
2 , a2

2 ∪ a1
1 , a2

1

Output: (2/3,1/3,0), (1/3, 2/3)

An effective algorithm: walk along the edges in , and drop the nodes with degree of 2. G

Remarks:

Traversing the whole graph G to add missing labels and drop duplicate
labels (i.e. pivoting) until we find one set of nodes that are fully labelled.

Guarantee to find one Nash, but not all of them! Determining whether
all Nash are found is not even NP.

Exponential time complexity because G has the number of vertices that
is exponential in (combinatorial many)

Because LCP has no objective, we cannot tell the progress before
finding a solution.

Corollary: almost all games have an odd number of Nash equilibrium.

n, m

ᳪݞ ݞ
'

, ᳪ
i) anstuctthepdyt.pe

ӡ ԫ ۸ E 1221 ӧྲ ,
ং E 1 9

.

1 :⋎ => V : {ஞ ,
ஞړ

,֦ ,
զ4 ̵,

X,܈ԧЪ24

3

X.tl/zEl2)LabdthevertexO:X,=oco
(ړ, 1 : x =o

(44 . 44) 2 i X ܈. ԧᅉ= 1ੜ ԧӷ,

3
:
3* +ᅊ

(4ԧ,

ӥ : (o , 0) : ۸ , 1 9 (o
, ԅ7 : 3 0 , 29

(ᤈ ,
: 1 1 1 3 1 144 , ՟) : 12 .3 1 .

ॠ : (o , o) : 12 1 3 1 1 44 .44) : so.li
զ

,
01 : ۸ ,3} (o

,

1131 : 9 1 , 2 1 .

3) Lemke-H.wsen step

⩑ᒧԏ
ஞ⊫

,
㸂ᅩၡᓒ!ᝣߝ!!ߝ

(b
, 2) : 1 1 ,231 droplfraP.ph2

ˇ^ (L 1 2) : s l ,2,31 dropz.fm

Q.pickel.CM/?So,l,2,3l.Teminateoutput:NomalitedcC.Y):=LYzh),C'h,h)

when is the best
response to x

y1

when is the best
response to x

y2

Lemke-Howson Methods

Potential Game is the other side of the coin where we know how to solve Nash.

A general game decomposition results suggest that

Potential games has no curl, harmonic games has no divergence.

In bimatrix games, potential game is related to the identical interest game, harmonic
game is related to the zero-sum games.

Since one can always write =(A, B) (
A − B

2
,

B − A
2

) ⊕ (
A + B

2
,

B + A
2

)

Potential Games

Normal-form Game = Potential Game ⊕ Harmonic Game[Candogan 2010]

zero-sum team-game

= ⊕

potential
games

geneal-sum
games

harmonic
games

Potential Game are those games that can be described a potential function:

The outcome of any player’s any possible deviation are captured by the change in .

Knowing the location deviations from a global viewpoint.

Examples of potential games:

All fully cooperative games are the potential game. Potential is the reward function.

The routing game we have seen is a potential game.

Each player choose a path (e.g. s->v->t)

The cost is then is the number of players using edge e.

We can find a potential function such that .

All potential games are also routing games.

Φ

Pi

Φ(f) = ∑
e∈E

fe

∑
j=1

ce(j) Ci(̂f) − Ci(f) = Φ(̂f) − Φ(f)

Potential Games

Φ (s−i, s′ i) − Φ(s) = Ci (s−i, s′ i) − Ci(s), ∀i ∈ [n], s ∈ S, s′ i ∈ Si

Ci(f) = ∑
e∈Pi

ce (fe), fe = {i : e ∈ Pi}

(0, 0) (1, 2)

(2, 1) (0, 0)

0 2

2 1

Φ

proof: is the pure Nash otherwise any player had incentive to deviate would have a smaller

value. This proof leads to an interesting learning algorithm that guarantees to convergence.
Best response dynamics can lead to Nash convergence.

A polynomial time convergence bound can be proved.

s = arg min
s∈S

Φ(s)

Best Response Dynamics in Potential Games

Theorem: every potential games has a pure Nash equilibrium

Best response dynamics has polynomial time rate.

Check the proof in [S. Chien 2011].
first prove the existence of a player with high cost
then prove the player chosen to take best response has cost within an factor of that of any other player.
third we can bound the decrease of potential function for each iteration.

Note that polynomial in the number of joint strategies (e.g, for 2 strategy players)

If either the assumptions on bounded jump condition, single source and sink, MaxGain
is dropped, then it could take exponential number of iterations [A. Skopalik 2008].

α

2n n

Best Response Dynamics in Potential Games

Contents

Algorithmic Game Theory Overview

Computing Nash Equilibrium

Two-Player Zero-Sum Games (LP, fictitious play, double oracle, PSRO)

Two-Player General-Sum Games (support enumeration, Lemke-Howson method)

N-Player Potential Games (best response dynamics)

Connections to MARL

MARL Formulations

Complexity Results (Nash is PPAD-hard)

Other Necessary Solution Concepts (correlated equilibrium, coarse CE)

No-Regret Dynamics

Solving Coarse Correlated Equilibrium

Solving Two-Player Zero-Sum Games (FP is not no-regret, MWU, ODO)

Solving Correlated Equilibrium (swap regret)

Multi-Agent Reinforcement Learning

Modelled by a Stochastic Game

 denotes the state space,
 is the joint-action space ,

 is the reward function for the i-th agent,
 is the transition function based on the joint action,

 is the distribution of the initial state, is a discount factor.
Special case: single-agent MDP, normal-form game
Dec-POMDP: assume state is not directly observed, but agents have same reward function.

Each agent tries to maximise its expected long-term reward:

(𝒮, 𝒜{1,…,n}, ℛ{1,…,n}, 𝒯, 𝒫0, γ)
𝒮
𝓐 𝒜1 × … × 𝒜n

ℛi = ℛi(s, ai, a−i)
𝒯 : 𝒮 × 𝓐 × 𝒮 → [0,1]
𝒫0 γ

n = 1 → |𝒮 | = 1 →

Vi,π(s) =
∞

∑
t=0

γtEπ,𝒫 {Ri,t |s0 = s, π}, π = [π1, …, πN]

Qi,π(s, a) = Ri(s, a) + γEs′ ∼p [Vi,π (s′)] Two-player stochastic
game example

𝒜1

𝒜2

… …

Many agents

Environment

Value-based method:

The sense of optimality changes, now it depends on other agents !

Fully-cooperative game: agents share the same reward function

Fully-competitive game: sum of agents' reward is zero

Assuming agents share the either the same or completely opposite interest is a strong assumption.

πi,t(s, ⋅) = solvei{Q⋅,t(st, ⋅)}

evali{Q⋅,t(st+1, ⋅)} = max
a

Qi,t(st+1, a)

solvei{Q⋅,t(st, ⋅)} = arg max
ai

(max
a−i

Qi,t(st, ai, a−i))

evali{Q⋅,t(st+1, ⋅)} = max
πi

min
a−i

Eπi[Qi,t(st, ai, a−i)]
solvei{Q⋅,t(st, ⋅)} = arg max

πi

min
a−i

Eπi[Qi,t(st, ai, a−i)]

Multi-Agent Reinforcement Learning

fully
cooperative

geneal-sum
games

fully
competitive

Qi,t+1 (sk, πt) = Qi,t (st, πt) + α[Ri,t+1 + γ ⋅ evali{Q⋅,t(st+1, ⋅)} − Qi,t (st, πt)]

Nash Equilibrium to MARL

Value-based method:

Nash-Q Learning [Hu. et al 2003] — Using Nash Equilibrium as the optima to guide agents’ policies

1. Solve the Nash Equilibrium for the current stage game

2. Improve the estimation of the Q-function by the Nash value function.

 Nash-Q operator is a contraction mapping.

πi,t(s, ⋅) = solvei {Q⋅,t (st, ⋅)}
Qi,t+1 (sk, πt) = Qi,t (st, πt) + α[Ri,t+1 + γ ⋅ evali {Q⋅,t (st+1, ⋅)} − Qi,t (st, πt)]

solvei {Q ⋅⋅t (s, ⋅)} = Nashi {Q⋅,t(st, ⋅)}

evali {Q⋅,t(s, ⋅)} = Vi(s, Nash {Q⋅,t(st, ⋅)})
ℋNashQ(s, a) = Es′ [R(s, a) + γVNash (s′)]

NashQ: compute Nash for
the normal-form game at
each state

Applying RL techniques to solve stochastic potential games [Mguni 2021].
Stochastic potential games, considering state transition, are defined by

Mguni found a dual-form MDP where the local optimum in value function corresponds
to the Markov Perfect Equilibrium (the Nash equilibrium) of SPG.

One can apply Q-learning/Actor Critic in the dual MDP to solve for the MPE of SPG.

MARL in Markov Potential Games

Ri (s, (ai, a−i)) − Ri (s, (a′ i, a−i)) = ϕ (s, (ai, a−i)) − ϕ (s, (a′ i, a−i)), ∀i ∈ [n], ∀s ∈ S

Bπ(s) = E [
∞

∑
t=0

γtϕ (st, at) ∣ at ∼ π], ∀s ∈ 𝒮, ∀π ∈ Πthe “value” function
(can also be learned from data)ϕ

Ylk (slk, alk, s′ lk) := ϕlk, ̂ρ (slk, alk) + sup
a′

Eℙ [B̂l] (s′ lk, a′)the “TD target”

Fl ∈ arg inf
𝔽∈ℍ

∑nk
lk=1 (Ylk (slk, alk, s′ lk) − [𝔽](slk, alk))

2
the “Bellman Error”

∇ηiB̂(πk
i,ηi,π

k
−i,η−i) (slk) ≈

1
L

L

∑
l=1

∇ηi
πi,ηi (⋅ ∣ slk)∇ai

lk
Fk (slk, alk) ai

lk
∼πk

i,ηi

the “policy gradient”

Complexity theory 101 — an intuitive explanation:

Recall the NP for a decision problem as

But the decision problem of “is there a Nash equilibrium?” is always true proved by Nash himself.

We need a new complexity class of Functional NP (FNP) to describe the search problems: not only do
solutions have to be verified in P-time, but also to find a solution!

Two-player Nash will be FNP because we can check whether Nash is true by checking the best responses.

However, two-player Nash will not be FNP-hard. To prove that, we need to show two-player Nash is not
FNP-Complete.

Complexity of Computing Nash Equilibrium

Two-player Nash is not FNP-complete.
Completeness is build on the notion of reduction:

If we want to solve P, it suffices to solve Q: to solve instance I of problem P, we can first find a solution of
X of A(I), which is of Q, and then use B to find a solution of B(X) of I.

We can proof that if two-player Nash is FNP-hard then NP=coNP (verifying “No” instance in P-time).

Proof by showing that if true, we can find a certificate of NO instances for SAT problems.

SAT problem: find alb such that “a AND NOT b” is satisfied. SAT is known to be NP-complete.
But, we know that NP coNP. ≠

Complexity of Computing Nash Equilibrium

Theorem: Two-player Nash is not FNP-complete

We need a new class that has complete problems for the search tasks.

Polynomial Parity Argument Directed (PPAD): the class of search problems where the existence of a
solution and an algorithm to find one are guaranteed by the properties that we have seen in the Lemke-
Howson methods.

finite graph, vertex has at most degree 2, every source has valid solution (e.g., Nash in)

A bit chicken-egg here: we want to describe the complexity of a problem, but now we say all
problems that look like this form the class of new complexity

We know PPAD problems can always have exponential-time algorithms, but can we have P-time solutions?

Short answer is we don’t know yet. Similar to we don’t know if P=NP.

But highly likely NO.

Uk, ∀k

Complexity of Computing Nash Equilibrium

Theorem: Two-player Nash is PPAD-complete.

Complexity of Multi-Agent Learning

Solving Nash Equilibrium is very challenging !

The solution concept of Nash comes from game theory
but it is not their main interest to find solutions.

Complexity of solving two-player Nash is PPAD-Hard
(intractable unless P=NP).

How to scale up multi-agent solution is open-question.

Approximate solution is still under development.

Equilibrium selection is problematic, how to coordinate
agents to agree on Nash during training is unknown.

Nash equilibrium assumes perfect rationality, but can be
unrealistic in the real world.

Ri (ai, a−i) ≥ Ri (a′ i, a−i) − ϵ
ϵ = .75 → .50 → .38 → .37 → .3393 [Tsaknakis 2008]

More complexity results of solving Nash [Shoham
2007, sec 4][Conitzer 2002]

Two-player general-sum normal-form game:
Compute NE PPAD-Hard
Count number of NE #P-Hard
Check uniqueness of NE NP-Hard
Guaranteed payoff for one player NP-Hard
Guaranteed sum of agents payoffs NP-Hard
Check action inclusion / exclusion in NE NP-Hard

Stochastic game:
Check pure-strategy NE existence PSPACE-Hard
Best response for arbitrary strategy Not Turing-
computable, even can not be implemented by a Turing PC.
It holds for two-player symmetrical game with finite time
length.

→
→

→
→
→

→

→
→

Complexity of Multi-Agent Learning

Copyright: Yaodong

We start from two-player zero-sum games, where solving Nash is P.
fictitious play, double oracle, PSRO

We look at potential games, where pure Nash exists and solving it is P.
best response dynamics has polynomial bound.
solving stochastic potential games through MARL.

We move onto two-player general-sum games, where solving Nash is PPAD-hard.
support enumeration, Lemke-Howson
connections to MARL
two-player Nash is PPAD-hard, MARL is even harder

What is Next?

So far, it is all about Nash. But it could be a dead-end for general cases !

MARL in Reality

what you are actually doingwhat you think you are doing

Multi-player general-sum games
with high-dimensional continuous
state-action space

Two-player discrete-action
game in a grid world.

what you Mum thinks

Something undescribable :)

“For the field to advance one cannot simply define arbitrary learning strategies, and
analyse whether the resulting dynamics converge in certain cases to a Nash equilibrium or
some other solution concept of the stage game. This in and of itself is not well motivated.”

Nash Equilibrium

Correlated Equilibrium

Coarse Correlated Equilibrium

Other Necessary Solution Concepts

NE CE CCE⊂ ⊂

Distinctions:
Nash requires a product of individual distribution:

CE/CCE requires arbitrary distribution over the joint strategy set:

CE: assuming a third party draw , and privately tell each player his but not , and each player

knows , now he decides whether to deviate to achieve

In the example of :

(yield, rush) and (rush, yield) are Nash, but sticking to them will block one side forever.
but we cannot let them randomly play 50%-50%, because 25% chance they will crash !
Instead, we want (yield, stop) = (stop, yield) = 1/2.
When the green light is on, we know others will yield to us. Both of us have no motivations to violate.

CCE vs CE: player needs to decide whether to deviate even before being told .

If we have no incentive to deviate no matter what we’re told, then we will not deviate even if is unknown.

s ∼ σ si s−i
σ Es∼σ [ci (s−i, s′ i) ∣ si]

σ σ

si

si

Other Necessary Solution Concepts

NE CE CCE⊂ ⊂

σ = σ1 × σ2 × ⋯ × σk
σ ∈ ΔS=S1×⋯×Sk

(0, 0) (1, 2)
(2, 1) (0, 0)

Yield

Rush

Yield Rush

Contents

Algorithmic Game Theory Overview

Computing Nash Equilibrium

Two-Player Zero-Sum Games (LP, fictitious play, double oracle, PSRO)

Two-Player General-Sum Games (support enumeration, Lemke-Howson method)

N-Player Potential Games (best response dynamics)

Connections to MARL

MARL Formulations

Complexity Results (Nash is PPAD-hard)

Other Necessary Solution Concepts (correlated equilibrium, coarse CE)

No-Regret Dynamics

Solving Coarse Correlated Equilibrium

Solving Two-Player Zero-Sum Games (FP is not no-regret, MWU, ODO)

Solving Correlated Equilibrium (swap regret)

Two Mainstreams of Multi-Agent Learning algorithms

Best response methods:

Fictitious play, double oracle, PSRO series, …

Regard the opponents fixed and seek for best
responses.

Easily and nicely integrated with RL methods (e.g.,
NFSP, PSRO)

Work effectively in potential and zero-sum games,
but limited in genera-sum games.

Average policy have convergence guarantee but
generally no last-iteration convergence

No-regret methods

MWU, Follow the Regularised/Perturbed leader,
CFR and all kinds of CFR variants, MCTS, …

Work in a self-play settings, no best-response step
but a no-regret step.

Often requires to know the model (the game tree,
utility function/strategies of opponents, etc)

A portal to the arsenal of online learning tools

Have nice convergence guarantee to Nash zero-
sum games, and CE/CCE in general-sum games.

No-Regret vs. Best-Response Methods in Zero-Sum Games

Black-box multi-agent
game engine

Input: a joint strategy ()π1, . . . , πN

Output: the reward ()R1, . . . , RN

Regret based methods: Poker Type

Best response based methods: StarCraft type

When planning is feasible (game tree is
easily accessible), existing techniques can
solve the games really well.

Perfect-information games:
MCTS, alpha-beta search, AlphaGO series
(AlphaZero, MuZero, etc)

Imperfect-information:
CFR series (DeepCFR, Libratus/Pluribus,
Deepstack), XFP/NFSP series

When planning is not feasible. StarCraft has
choices per time step vs. the whole tree of
chess (Texas holdem , GO)

Enumerating all policies’ actions at each state
and then playing a best response is infeasible.
But an approximate BR can be computed.

Solution: training a population of RL agents, treat
each RL agent as one “pure strategy” and solve
the game in the meta-level (e.g. PSRO methods).

1026

1050 1080 10170

Black-box multi-agent
game engine

Input: a joint strategy ()π1, . . . , πN

Output: the reward ()R1, . . . , RN

Regret based methods: Poker Type

Best response based methods: StarCraft type

When planning is feasible (game tree is
easily accessible), existing techniques can
solve the games really well.

Perfect-information games:
MCTS, alpha-beta search, AlphaGO series
(AlphaZero, MuZero, etc)

Imperfect-information:
CFR series (DeepCFR, Libratus/Pluribus,
Deepstack), XFP/NFSP series

Planning is not always feasible. StarCraft has
 choices per step (vs. the game tree size of

chess , Texas holdem , GO)

Enumerating all policies’ actions at each state
and then playing a randomise best response is
infeasible (i.e. RPS can not apply)

Solution: design a game of game — meta-game,
the problem problem, auto-curricula.

1026

1050 1080 10170

They are equivalent
Regret Value !≈

No-Regret vs. Best-Response Methods in Zero-Sum Games

Online Learning and No-Regret

The settings of online learning:
The algorithm picks a strategy at time step

The adversary/nature picks cost vector
An action is drawn from , and the algorithm incurs cost of
Full-information settings: observe the entire cost vector . Bandit settings: only observe selected
Oblivious adversary: only depends on . Adaptive adversary: depends on { , (), ()}
Goal: we try to learn how should we adapt our algorithms, learn from mistakes [remember Alan Turing] !

The (external) regret of a sequence of actions w.r.t action :

A no-(external)-regret algorithm is said to be no-regret (also Hannan consistent) if:

pt ∈ Δ|A| t

ct : A → [0,1]
at pt ct(at)

ct ct(at)
ct t ct t p1, . . . , pt a1, . . . , at−1

a ∈ A

𝒜
RT(a) = 1

T (∑T
t=1 ct (at) − ∑T

t=1 ct(a))

limT→∞ E [R𝒜
T (a)] =

1
T (

T

∑
i=1

E
at∼pt [ct (at)] −

T

∑
t=1

ct(a)) = 0,∀a ∈ A

No-Regret Learning

No-regret to the best action sequence in hindsight is impossible.

When the adversary exploits you, in hindsight, a zero-loss best action sequence is always possible. If we known
 before each iteration we can have , then the regret explodes.

However, no-regret to the best action (not sequence!) in hindsight is possible:

In games, no-regret is the minimal requirement for rationale.

∑T
t=1 mina∈A ct(a)

ct

E [R𝒜
T (a)] =

1
T (

T

∑
i=1

E
at∼pt [ct (at)] −

T

∑
t=1

min
a∈A

ct(a)) = 𝒪(T) ≠ 𝒪(1) not sublinear!

T

∑
t=1

min
a∈A

ct(a) = 0

T

∑
t=1

min
a∈A

ct(a) vs . min
a∈A

T

∑
t=1

ct(a)

best action sequence best action in hindsight

No-Regret Learning towards Coarse Correlated Equilibrium

In games, no-regret is the minimal requirement for rationale.

Recall no-regret is

Proof:

Theorem: if all players adopt no-regret algorithms such that ,

then the average distribution is an CCE, i.e.,

E[R𝒜i
T (a)] ≤ ϵ, ∀i ∈ [k], a ∈ Si

σ =
T

∑
t=1

k

∏
i=1

pt
i

T
ϵ− E

s∼σ [Ci(s)] ≤ E
s∼σ [Ci (s−i, s′ i)] + ϵ

E
s∼σ

[Ci(s)] − E
s∼σ [Ci (s−i, s′ i)] =

1
T

T

∑
t=1

E
s∼σt [Ci(s)] −

1
T

T

∑
t=1

E
s∼σt [Ci (s−i, s′ i)]

=
1
T (

T

∑
t=1

E
at∼pt

i
[ct

i (at)] −
T

∑
t=1

ct
i (s′ i))

= E [R𝒜i
T (s′ i)] ≤ ϵ

Note that in game playing, we have:
ct

i(a) = Es∼σt [Ci (s−i, a)]

limT→∞ E [R𝒜
T (a)] =

1
T (

T

∑
i=1

E
at∼pt [ct (at)] −

T

∑
t=1

ct(a)) = 0,∀a ∈ A

No-Regret Learning in Zero-Sum Games

We have showed that if all players play no-regret methods, they can reach a CCE.

We can further show that no-regret players will reach the Nash in zero-sum games.
For better clarity. Let’s assume row player chooses an action , mixed strategy

Column player instead of deciding , let’s assume they choose an action and
Assuming both players adopt no-regret algorithm regardless of what the opponent does, such that

Recall that the Nash value of a two-player zero-sum game is

We have the main theorem that

It ∈ {1,...,N} pt = (p1,t, …, pN,t)
ct Jt ∈ {1,...,M} qt = (q1,t, …, qM,t)

lim supT→∞ (1
T ∑n

t=1 ℓ (It, Jt) − mini=1,…,N
1
T ∑n

t=1 ℓ (i, Jt)) ≤ 0

Theorem: assuming that in a two-player zero-sum game, if both players play no-regret

methods, then almost surely.lim
T→∞

1
T

T

∑
t=1

ℓ (It, Jt) = V = max
q

min
p

N

∑
i=1

M

∑
j=1

piqjℓ(i, j)

max
q

min
p

N

∑
i=1

M

∑
j=1

piqjℓ(i, j)

No-Regret Learning in Zero-Sum Games
Theorem: assuming that in a two-player zero-sum game, if both players play no-regret

methods, then almost surely.lim
T→∞

1
T

T

∑
t=1

ℓ (It, Jt) = V = max
q

min
p

N

∑
i=1

M

∑
j=1

piqjℓ(i, j)

Proof: 1) we first should that regardless of what column player plays, if the row plays play no-regret method, his
loss will be no more than maximin value (i.e., worst case scenario to row player) .

min
i=1,…,N

1
T

T

∑
t=1

ℓ (i, Jt) = min
p

1
T

T

∑
t=1

(
N

∑
i=1

piℓ(i, j)) pure strategy is a special mixed strategy

= min
p

M

∑
j=1

(1
T

T

∑
t=1

1{Jt=j}ℓ̄(p, j))

= min
p

1
T

T

∑
t=1

ℓ̄ (p, Jt) change of notation

empirical mean on column player’s action

= min
p

ℓ̄ (p, ̂qT)
≤ maxq minp ℓ̄(p, q) = V

expectation over the empirical mean of column player

done!

lim supT→∞
1
T ∑T

t=1 ℓ (It, Jt) ≤ V

Since the row player adopts no-regret method we only need to show:

No-Regret Learning in Zero-Sum Games
Theorem: assuming that in a two-player zero-sum game, if both players play no-regret

methods, then almost surely.lim
T→∞

1
T

T

∑
t=1

ℓ (It, Jt) = V = max
q

min
p

N

∑
i=1

M

∑
j=1

piqjℓ(i, j)

Proof: 2) we proved that

lim inf
T→∞

1
T

T

∑
t=1

ℓ (It, Jt) ≥ min
p

max
q

ℓ̄(p, q) = V

lim supT→∞
1
T ∑T

t=1 ℓ (It, Jt) ≤ V

By von Neumann’s minimax theorem, we prove that

lim
T→∞

1
T

T

∑
t=1

ℓ (It, Jt) = V This mean no-regret players self-play will reach to
Nash equilibrium in two-player zero-sum games.

lim sup
T→∞

(1
T

n

∑
t=1

ℓ (It, Jt) − min
i=1,…,N

1
T

n

∑
t=1

ℓ (i, Jt)) ≤ 0

min
i=1,…,N

1
T

T

∑
t=1

ℓ (i, Jt) ≤ V

for row player, we can do the same for the column player

, and since row player plays no-regret

we can know that

No-Regret Learning in Zero-Sum Games

We have showed that no-regret players will reach Nash equilibrium value.

Furthermore, we can show that they reach to the Nash strategy.

Theorem: In a two-player zero-sum game, if both players play no-regret methods, then

 almost surely converge to the set of Nash equilibrium.̂p i,T =
1
T

T

∑
t=1

1{It=i}, ̂q j,T =
1
T

T

∑
t=1

1{Jt=j}

Proof: in the previous proof, we have shown that
min

p
ℓ̄ (p, ̂qT) ≤ V, max

q
ℓ̄ (̂pT, q) ≥ V

and due to the uniqueness of V value in zero-sum games
min

p
ℓ̄ (p, ̂qT) = max

q
ℓ̄ (̂pT, q) = V

and because of
ℓ̄ (̂pT, ̂qT) ≥ min

p
ℓ̄ (p, ̂qT), max

q
ℓ̄ (̂pT, q) ≥ ℓ̄ (̂pT, ̂qT)

ℓ̄ (̂pT, ̂qT) = V
finally, we prove that

This means that the empirical mean of is the NasĥpT, ̂qT

Fictitious Play is Not No-Regret

No-regret can lead to CCE in general-sum, NE in two-player zero-sum.

But, what exactly is a no-regret algorithm? How can we behave to achieve no-regret?

Surprisingly, Fictitious play is not no-regret !
Recall that fictitious play, also known as Follow-the-Leader, is to take the best response to the average
cumulative loss.

Consider actions, let be chosen such that and

Then the accumulative loss for both actions is T/2, and the FP will suffer a loss of T, thus has constant regret.

There are many variants that make FP no-regret, for example Follow-the-Perturbed-Leader:

N = 2 Jt ℓ(1,Jt) = (1/2,0,1,0,1,...) ℓ(2,Jt) = (1/2,1,0,1,0,...)

lim supT→∞ (1
T ∑n

t=1 ℓ (It, Jt) − mini=1,…,N
1
T ∑n

t=1 ℓ (i, Jt)) ≤ 0

It = argmin
i=1,…,N (1

t − 1 ∑t−1
t=1 ℓ (i, Jt))

 any i.i.d random vectors of size It = argmin
i=1,…,N (1

t − 1

t−1

∑
t=1

ℓ (i, Jt) + Zi,t), Zt N

No-Regret Algorithms: MWU

Fictitious play is not no-regret !

Let’s introduce a true no-regret algorithm: Multiplicative Weight Update [Freund 1999].
MWU has many names: Hedge, Exponential Weights Algorithms, Randomised Weighted Majority

Equivalently, one can think of the following iterative process:

Large means more exploitation, small means more exploration.

Equivalently, one can get MWU by the following maximum entropy framework (a common trick in RL).

η η

pi,t =
exp(−η∑t−1

s=1 ℓ(i, Js))
∑|A|

k=1 exp(−η∑t−1
s=1 ℓ(k, Js))

pt =
wt

∑a∈A wt(a)
, wt+1(a) = wt(a) ⋅ exp(− ηℓ(a, Jt)), w1(a) = 1 ∀a ∈ A

arg min
p∈Δ|A|

ℓ̄(p, Js) + 1/η ⋅ ∑
i

pi log pi similar to soft Q-learning !

No-Regret Algorithms: MWU

Let’s introduce a true no-regret algorithm — Multiplicative Weight Update.
Equivalently, one can get MWU by the following maximum entropy framework (a common trick in RL).

arg min
p∈Δ|A|

ℓ̄(p, Js) + 1/η ⋅ ∑
i

pi log pi =
exp (−η∑t−1

s=1 ℓ (i, Js))
∑|A|

k=1 exp (−η∑t−1
s=1 ℓ (k, Js))

argginlcp.is) ܈ ᤈ ӧ

pilespie.FI?ilci,Js)tYg.IPilegPi=YgEPi(g.lci,Js)tlgPi)=hEpIlgexplg.lci
(ڜ,

tlgpiJ-bEpI-legexpl-g.li/JsDtlgPD=YgEpILgg.lTs)JpT=exp(-g.ui,Js)
)

tominimiteiherefreP-iexpl-g.l.ci/Js))/Iiexpc-g-lci,Jsl)

No-Regret Algorithms: MWU

Let’s introduce a true no-regret algorithm — Multiplicative Weight Update.

Let’s now show MWU is indeed a no-regret method

Let and , thus the regret-bound is

We first bound the denumerator

opt = min
a∈A

n

∑
t=1

ℓ (a, Jt) vt = ∑
a∈|A|

pt(a) ⋅ ℓ(a, Jt)

pt =
wt

∑a∈A wt(a)
, wt+1(a) = wt(a) ⋅ exp(− ηℓ(a, Jt)), w1(a) = 1 ∀a ∈ A

lim
T→∞

1
T (

T

∑
t=1

vt − opt)
∑
a∈A

wt(a) ≥ wt(a*) = exp(−η ⋅ opt) multiplication rule of exp function

∑
a

wt+1(a) = ∑
a

wt(a) ⋅ exp(− ηℓ(a, Jt)) := ∑
a

wt(a) ⋅ (1 − ϵ)ℓ(a,Jt) assume1 − ϵ = e−η

≤ ∑
a

wt(a) ⋅ (1 − ϵℓ(a, Jt)) Taylor expansion

= ∑
a

wt(a) ⋅ (1 − ϵvt) definition of vt = ∑
a∈|A|

wt(a)
∑a Wt(a)

⋅ ℓ(a, Jt)

≥ (1 − ϵ)opt assume 1 − ϵ = e−η

No-Regret Algorithms: MWU

Regret bound of MWU

Let and , thus the regret-bound is

Merge the upper and lower bound in the last slides

Set we conclude the proof

opt = min
a∈A

n

∑
t=1

ℓ (a, Jt) vt = ∑
a∈|A|

pt(a) ⋅ ℓ(a, Jt)

ϵ = ln |A | /T

1
T (∑T

t=1 vt − opt)

(1 − ϵ)opt ≤ ∑
a∈A

wt(a) ≤ ∑
a

w1(a)
T

∏
t=1

(1 − ϵvt) = |A |
T

∏
t=1

(1 − ϵvt)

opt ⋅ ln(1 − ϵ) ≤ ln |A | +
T

∑
t=1

ln (1 − ϵvt)

opt ⋅ (−ϵ − ϵ2) ≤ ln |A | +
T

∑
t=1

(−ϵvt)

1
T (

T

∑
t=1

vt − opt) ≤
1
T (ϵT +

1
ϵ

ln |A |) =
1
T

(T ln |A | + T ln |A |) ≤ 2
ln |A |

T
→ 0

Taylor expansion ln(1 − x) = − x − x2/2

Note: the log
term is great for
many real-world

problems!

1. Nash is unexploitbale, but when a player always plays Rock, you should play Paper rather than (1/3, 1/3, 1/3).

2. Double Oracle/PSRO assumes both players play the worst-case scenario, can be too pessimistic during training.

3. Online learning provides a framework about how to exploit opponents through minimising regret.

What we want:
if opponents play , we want the player to have s.t. c1, c2, . . . , cT π1, π2, . . . , πT

lim
T→∞

RT

T
= 0, RT = max

π∈ΔΠ

T

∑
t=1

(π⊤
t Act − π⊤Act)

What we know:
hedge algorithm/multiplicative weight update can achieve no-regret property
if one follows the below update

the regret of MWU is 𝒪(log(n)/T)

πt+1(i) = πt(i)
exp (−μtai⊤Act)

∑n
i=1 πt(i)exp (−μtai⊤Act)

, ∀i ∈ [n]

too pessimistic

No-Regret Algorithms: Online Double Oracle

Intuition: maintain a time window to track opponent’s strategy, if
no new best response can be found, then keep exploiting, otherwise
refresh the time window to catch up with the latest change

Ti

No-Regret Algorithms: Online Double Oracle

1.OSO is a no-regret algorithm.

2.Putting OSO into self-play settings, we get Online Double Oracle which can solve Nash.

Recall that in two-player zero-sum game, if two no-regret methods self play, the outcome will leads to a Nash equilibrium!

We just prove that.

No-Regret Algorithms: Online Double Oracle

Exploitability on the Spinning Top games Exploitability on Poker

Play with an imperfect opponent

No-Regret Algorithms: Online Double Oracle

No-Regret Algorithms for Correlated Equilibrium

No-(external)-regret players can lead to CCE in multi-player general-sum games, and
Nash in two-player zero-sum games.

The last missing piece: how about correlated equilibrium?

We can also define CE through a switching function (play action b when I plan to play a)

: if a CE, then any switching will incur large cost

: we can rewrite (7.3.1) into

⇒

⇐ ∑x∈Si (Pr [si = x] ⋅ E
s∼σ [Ci(s) ∣ si = x]) ≤ ∑x∈Si (Pr [si = x] ⋅ E

s∼σ [Ci (s−i, δ (si)) ∣ si = x])
Pr [si = a] ⋅ E

s∼σ
[Ci(s) ∣ si = a] ≤ Pr [si = a] ⋅ E

s∼σ [Ci (s−i, b) ∣ si = a]
⟹ E

s∼σ
[Ci(s) ∣ si = a] ≤ E

s∼σ [Ci (s−i, b) ∣ si = a]
both sides only differ when x = a

We can also define CE through a switching function (play action b when I plan to play a)

We removed the condition requirement of CE at the price of switching function.

Best action in hindsight is equivalent to a switching function that maps .

The new definition relates to swap-regret:

No-(swap)-regret implies no-(external)-regret. Not the other way round.

To remember: no internal regret CE, no external regret CCE.

at → a*

→ →

No-Regret Algorithms for Correlated Equilibrium

best action sequence
in hindsight

external regret:
best action in hindsight

internal regret:
best swap functions

For algorithm , the expected swap regret w.r.t a is defined by

Compare to external-regret

No-swap-regret means .

proof:

𝒜 δ : A → A

lim
T→∞

E[S𝒜
T (δ)] = 0, ∀δ

No-Regret Algorithms for Correlated Equilibrium

E [R𝒜
T (a)] =

1
T (

T

∑
i=1

E
at∼pt [ct (at)] −

T

∑
t=1

ct(a))

E [S𝒜
T (δ)] = 1

T (∑T
t=1 E

at∼pt [ct (at)] − ∑T
t=1 E

at∼pt [ct (δ (at))])

Theorem: if all players adopt no-swap-regret algorithms s.t. ,

then the average distribution is an CE, i.e.,

E[S𝒜i
T (δ)] ≤ ϵ, ∀i ∈ [k], ∀δ

σ =
T

∑
t=1

k

∏
i=1

pt
i

T
ϵ− E

s∼σ [Ci(s)] ≤ E
s∼σ [Ci (s−i, δ(si))] + ϵ

E
s∼α [Ci(s)] − E

s∼σ
[Ci(s−i, δ(si))]

= 1
T ∑T

t=1 E
at∼pt [ct (at)] − 1

T ∑T
t=1 E

at∼pt [ct (δ (at))]
= E[S𝒜i

T (δ)] ≤ ϵ

Note that ct(a) = Es∼σt [Ci (s−i, a)]

The goal is then to develop no-swap-regret algorithms like MWU for external regret.

In turns out we can transform no-external-regret algorithm into no-swap-regret.

The idea: for each action, maintain a no-regret algorithm such as MWU

Let different no-regret algorithm () reach a consensus (see how later).

“Lie” to each no-regret algorithm the loss of instead of .

The goal of no-swap-regret is then written as

qt
i

qt
1, . . . , qt

n pt

pt(i)ct(i) ct(i)

No-Swap-Regret Algorithms for Correlated Equilibrium

Theorem: if all players adopt no-swap-regret algorithms s.t. ,

then the average distribution is an CE, i.e.,

E[S𝒜i
T (δ)] ≤ ϵ, ∀i ∈ [k], ∀δ

σ =
T

∑
t=1

k

∏
i=1

pt
i

T
ϵ− E

s∼σ [Ci(s)] ≤ E
s∼σ [Ci (s−i, δ(si))] + ϵ

1
T

T

∑
t=1

n

∑
i=1

pt(i)ct(i) −
1
T

T

∑
t=1

n

∑
i=1

pt(i)ct(δ(i)) = o(1)

The goal of no-swap-regret is then written as

Because for each action, we maintain a no-regret algorithm, thus we have

Sum over will not influence the total regret, since no term is involved.

Recall is the probability that the j-th no-regret algorithm pick the i-th action. If we

make , then we use the above equation prove no-swap-regret.

n = |A | T

qt
j(i)

pt(i) =
n

∑
j=1

qt
j(i)p

t(j)

No-Swap-Regret Algorithms for Correlated Equilibrium

1
T

T

∑
t=1

n

∑
i=1

pt(i)ct(i)−
1
T

T

∑
t=1

n

∑
i=1

pt(i)ct(δ(i)) = o(1)

1
T

T

∑
t=1

n

∑
i=1

qt
j(i)(pt(j)ct(i)) −

1
T

T

∑
t=1

pt(j)ct(δ(j)) ≤ Rj
T(δ(j)) = o(1) this is because no regret w.r.t δ(j)

the cost that is lied playing in hindsight
and internal regret is always
smaller than external regret

δ(j)

1
T ∑T

t=1 ∑n
i=1 ∑n

j=1 qt
j(i)(pt(j)ct(i))− 1

T ∑T
t=1 ∑n

j=1 pt(j)ct(δ(j)) ≤ ∑n
j=1 Rj

T(δ(j)) = o(1)

DONE!

Thanks!

