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Preface

The vitality of the computing and communications industry is remarkable. Accom-
plished experts occasionally fall into the trap of thinking that all major inventions
in their field have been made, and that what remains to be discovered are mere
refinements to known methods. Advances in the field of computing and communi-
cations have proven experts wrong time and time again. Current notable examples
include 5G communication networks and AI computing technologies. Such major
technological advances are deeply rooted in mathematical science.

How can we ensure the industry preserves the vitality necessary to generate such
advances? With this sizeable challenge in mind, we assembled a committee com-
prised of both mathematical scientists and engineering experts from the computing
and communications industry to compile The Review of Mathematical Science in
Computing and Communications. The committee is devoted to providing answers
to the question presented above. The review intends to provide an array of insights
from a variety of di↵erent perspectives.

Mathematics is a beautifully self-coherent body of interconnected concepts, but
it was not developed in isolation – it has been accompanied all the way by natural
science, especially physics. Bertrand Russell once said, “Physics is mathematical
not because we know so much about the physical world, but because we know so
little; it is only its mathematical properties that we can discover”. Mathematics has
been regarded as the universal language for natural science, and likewise, physics
has been described as a rich source of inspiration and insight in mathematics. Cross-
disciplinary work has led to some of the greatest discoveries of all time. For example,
Newton’s pursuit of classical mechanics resulted in the invention of calculus. David
Hilbert, best known as the man who set the agenda for twentieth-century math-
ematics with his famous 23 problems, defined the di↵erential equations of gravity
that gave mathematical formulation to Einstein’s theory of general relativity. Eu-
gene Wigner went so far as to describe the intimacy between mathematics and
physics as “a miracle”, and his experiences consistently proved him right. Leading
institutes around the world, such as IAS and IHES, have achieved great success
in both mathematics and physics by promoting intimate exchanges across the two
fields of study.
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In contrast, the relationship between modern computing, communications and
mathematics has been slightly less direct. A history can be traced back to Turing,
Von Neumann and Shannon, the three mathematicians who have come to be seen
as the founding fathers of computing and communications. Their work followed a
familiar pattern: first, being drawn to a practical challenge (such as sending infor-
mation across a noisy channel, or performing complex computational calculations)
with a particular set of tools available (such as a transistor capable of processing
bits); second, formulating the challenge into a mathematical problem; and last,
developing mathematical solutions to prove that the theory addresses practical dif-
ficulties. In more recent times, Hinton’s work on backpropagation generated so
much excitement in the study of AI that neural network processing quickly became
the new focus of the computing industry. Can the drive to obtain knowledge from
massive amounts of data, to simulate complex phenomena accurately, dealing with
intrinsic uncertainty, and communicating at the semantic level – rather than at the
bit level – become the inspiration for a new generation of mathematicians? We be-
lieve this review will persuade many others to build fruitful relationships between
computing, communications and mathematics.

Many industry visionaries have long realized that the key to business success is to
convert scientific methods into technologies, subsequently applying them to prod-
uct design through the process of research and development (R&D). The bulk of
research is often conducted well before the R&D process. Such a realization has led
to confusion among leaders about how to support research in mathematical science.
We have designed this review to assuage this confusion by addressing the major
challenges we face in the industry, and open up mathematical problems to more
fruitful cross-disciplinary discussion. This will help strengthen the confidence and
commitment from industry leaders to provide sustained support for mathematical
studies, and to direct resources in the most e↵ective directions.

Researchers and developers in the communications and computing industries are
mostly trained in highly specialized domains. They often lack an up-to-date knowl-
edge and awareness of mathematical science beyond their own niche. As a result,
many opportunities for applying new mathematical methods to solve problems in
engineering are lost, simply because they are developed in other fields. Many engi-
neers also lack the training to be able to convert engineering problems into mathe-
matical models, and so must seek help from mathematicians. This review aims to
serve as a map for engineers, to help them navigate the boundary between engi-
neering and mathematics.

Most areas of mathematical science are highly practical. Although some mathe-
maticians primarily focus on proving theorems, others create and apply models to
solve real-life problems. It is not uncommon for mathematicians to underestimate
the impact of their work. Equally, many mathematicians are not fully aware of the
key mathematical problems in any given applied domain. One major purpose of
this review, therefore, is to highlight the main mathematical problems currently
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being dealt with in computing and communications industries, and to encourage
more mathematicians to direct their e↵orts towards solving them. It is hoped that
interdisciplinary research can be promoted to maximize both its academic impact
and the benefits it brings for society.

It must be stressed that the role of advancing fundamental research in computing
and communications industries cannot be undertaken by one organization alone.
The Review is intended as a beacon to generate a new wave of excitement among the
international research community. Ideally, this review will motivate policymakers
and university executives to fund research and build education programs with a
clearer purpose. We hope it will inspire a new generation of young mathematicians
to join this grand e↵ort. Finally, we intend to persuade researchers to check their
direction against ours and set their new course accordingly.

The committee is extraordinary in its makeup, with scholars from the core of
mathematics and experts who have made outstanding contributions to the foun-
dation of modern communication networks and advanced computing devices. We
greatly appreciate and sincerely thank the contributors for their capacity to envi-
sion a new era of mathematical science that will pave the way for the creation of
new machines that can perceive, learn, communicate, think and create.
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Multi-Agent Reinforcement Learning

Machine learning can be considered as the process of converting data into knowl-
edge [365]. The input for a learning algorithm is training data (for example, images
containing cats), and the output is some knowledge (for example, rules about how to
detect cats in an image). This knowledge usually takes the form of a computer pro-
gram that can perform some task (for example, an automatic cat detector). In the
last decade, significant progress has been made by a special kind of machine learn-
ing technique: deep learning [LBH15]. Deep learning also involves the conversion
of training data into output knowledge, but it incorporates DNNs in the learning
process. This allows the software to train itself to perform new tasks rather than
simply relying on the programmer. In this way, the di↵erent kinds of DNNs [357] are
able to find and disentangle feature representations [29] from high-dimensional and
more complex sets of data. An uncountable number of breakthroughs in real-world
AI applications have been achieved through the usage of DNNs, with the domains
of computer vision [KSH12] and natural language processing [99] being the biggest
beneficiaries.

On top of feature recognition from existing data, modern AI applications often
require computer programs to make decisions based on the acquired knowledge (see
Figure 19.0.1). To illustrate the key components of decision making, let us consider
the real-world example of controlling a car to safely drive through an intersection.
At each time step, a robot car can move around by steering, accelerating and
braking. Its goal is to exit the intersection safely and reach the destination (with
decisions: go straight, or turn left/right into another lane). Therefore, in addition to
being able to detect objects such as tra�c lights, lane markings, or other cars (by
converting data to knowledge), we aim to find a steering policy that can control the
car to make a sequence of manoeuvres so as to achieve the goal (making decisions
based on the knowledge gained). In a decision-making setting such as this one, two
additional challenges arise:

1 Firstly, during the decision-making process, at each time step the robot car should
not only consider the immediate value of its current action, but also the conse-
quence of its current action in the future. For example, In the case of driving
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interactions happen!

Figure 19.0.1 Modern AI applications are now being transformed from pure feature recog-
nition (for example, detecting a cat in an image) to decision making (driving through a
tra�c intersection safely), where interaction among multiple agents inevitably occurs. As
a result, each agent has to behave strategically. Furthermore, the problem becomes more
challenging because current decisions influence the future outcomes

through an intersection, it would be detrimental to have a policy that chooses
to steer in a safe direction at the beginning of the process if it would eventually
lead to a car crash later on.

2 Secondly, for each decision to be made correctly and safely, the car must also
consider the behavior of other cars and act correspondingly. As human drivers,
for example, we often predict in advance other cars’ movements and then take
strategic moves in response (like giving way to an oncoming car, or speeding up
to merge into another lane).

The need for an adaptive decision-making framework, together with the complexity
of dealing with multiple interacting learners, has led to the development of multi-
agent reinforcement learning (MARL).

MARL addresses the sequential decision-making problem of having multiple au-
tonomous agents that operate in a common stochastic environment, each of which
aims to maximize its own long-term profit by interacting with the environment
and other agents. It is built on the knowledge of multi-agent systems (MAS) and
reinforcement learning (RL).

19.1 Background of Reinforcement Learning

Reinforcement learning (RL) is a sub-section of machine learning, where agents
learn how to behave optimally based on a trial-and-error procedure during their
interaction with the environment. Unlike supervised learning that takes labeled
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data as its input (for example, an image labeled with cats), RL is goal-oriented:
it constructs a learning model that learns to reach the optimal long-term goal by
improvement through trial and error, with the learner having no labeled data to
obtain knowledge from. The word “reinforcement” refers to the learning mechanism,
since the actions that lead to satisfactory outcomes are reinforced in the learner’s
set of behaviors.

Historically, the reinforcement learning mechanism was originally observed from
studying the behaviour of cats in a puzzle box [416]. [279] first proposed the compu-
tational model of reinforcement learning in his Ph.D. thesis, and named his resulting
analog machine the stochastic neural-analog reinforcement calculator. Several years
later, he first suggested the connection between the dynamic programming principle
[28] and reinforcement learning [278]. In 1972, [216] integrated the trial-and-error
learning process with the finding of temporal di↵erence (TD), learning from psy-
chology. TD learning quickly turned out to be indispensable in scaling reinforcement
learning for larger systems. With all these prior modes of dynamic programming
and TD learning established, [441] then laid the foundation for present day RL by
using the Markov decision process (MDP) and proposing the famous Q-learning
method as the solver. As a dynamic programming method, the original Q-learning
process inherits Bellman’s “curse of dimensionality” [28], which strongly limits its
applications when the number of state variables are large. To overcome such bot-
tlenecks, [35] proposed approximate dynamic programming methods using neural
networks. More recently, [283] from DeepMind made a significant breakthrough by
introducing deep Q-learning (DQN) architecture that leverages the representation
power of DNNs for approximate dynamic programming methods. DQN demon-
strated human-level performance on 49 Atari games. Since then, deep RL techniques
have become a normative approach in machine learning/AI, attracting tremendous
attention from the research community.

RL originates from an understanding of animal behavior, since animals use trial-
and-error to reinforce beneficial behaviors, which they then perform more fre-
quently. During its development from this basis, computational RL incorporates
ideas such as optimal control theory, and findings from psychology that help mimic
the way humans make decisions, in order to maximize the long-term profit of de-
cision making tasks. As a result, RL methods can be used naturally to train a
computer program (an agent) to a level comparable to that of a human on certain
tasks. The earliest success of RL methods against human players can be traced back
to the game of backgammon [414]. In addition, DQN [283] shows a human level of
performance playing Atari games. More recently, the advancement in using RL to
solve sequential decision-making problems was marked by the remarkable success
of AlphaGo series [372, 376, 374], a self-taught RL agent that beats top professional
players of the game GO, a game whose search space (10761 possible games) is even
greater than the number of atoms in the universe.
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Figure 19.1.1 The success of the AlphaGo series marks the maturity of the single-agent
decision-making process. The year of 2019 was a booming year for MARL techniques; re-
markable progress was achieved in solving immensely challenging multi-player real-strategy
video games and multi-player incomplete-information poker games

In fact, the majority of successful RL applications, such as in the game GO 1,
robotic control [218], and autonomous driving [366], naturally involve the partici-
pation of multiple AI agents, which probe into the realm of MARL. As we would
expect, the significant progress of single-agent RL methods - marked by the 2016
success in GO – foreshadowed the breakthroughs of multi-agent RL techniques in
the following years. –

19.1.1 2019: Booming Year for MARL

The year 2019 was a booming year for MARL development as a series of break-
throughs were made in tackling immensely challenging multi-agent tasks, which
people used to think were impossible to solve by AI. This being said, the progress
made in the field of MARL, though remarkable, has been overshadowed to some
extent by the prior success of AlphaGo [75]. It is possible that the AlphaGo series
[372, 376, 374] has largely fulfilled people’s expectations for the e↵ectiveness of RL
methods, such that there is lack of interest in the succeeding advancements of the
field. The ripples caused by MARL progress were rather mild among the research
community. In this section, we highlight several pieces of work that we believe are
important and could have a profound impact on the future development of MARL
techniques.

One popular test-bed of MARL is StarCraft II [431], a multi-player real-strategy

1 Arguably, AlphaGo can also be treated as a multi-agent technique if we consider the opponent in
self-play as another agent.
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computer game that has its own professional league. In this game, each player has
only limited information of the game state, and the dimension of the search space is
orders of magnitude larger than the GO game (1026 possible choices for every move).
Designing e↵ective RL methods for StarCraft II was once believed a long-term
challenge for AI [431]. A breakthrough was achieved by AlphaStar [430], which has
demonstrated Grandmaster-level skills by ranking above 99.8% of human players.
Another prominent video game-based testbed for MARL is Dota2. Dota2 is a zero-
sum game play by two teams, each team having five players. From each agent’s
perspective, besides the di�culty of incomplete information (similar to StarCraft
II), Dota 2 is more challenging in that both cooperation among teammates and
competition against the opposing team need to be considered. The OpenAI Five
AI system [321] demonstrated superhuman performances in Dota2 by defeating
world champions in public e-sports competition.

Apart from StarCraft II and Dota2, [192] and [20] showed human-level perfor-
mance in Capture-the-Flag and Hide-and-Seek game modes respectively. Although
the games themselves are less sophisticated than either StarCraft II or Dota2, it is
still non-trivial for AI agents to master their tactics, so the impressive performance
of the agents once again proves the e�cacy of MARL. Interestingly, both authors
reported emergent behaviors in the AI, induced by their proposed MARL methods,
that are able to be understood by humans, and are physically grounded.

One last remarkable achievement of MARL worth mentioning its application in
the poker game, Texas hold’ em, which is a multi-player extensive-form game with
incomplete information accessible to the player. Heads-up (two player) no-limit
hold’em has more than 6 ⇤ 10161 information states. Only recently have ground-
breaking achievements in the game been made, thanks to MARL. Two independent
programs, DeepStack [286] and Libratus [57] are both are able to beat professional
human players. Even more recently, Libratus was upgraded to Pluribus [58] and
showed remarkable performance by winning over one million dollars from five elite
human professionals in a no-limit setting.

For a deeper understanding on RL and MARL, mathematical notation and decon-
struction of the concepts is needed. In the next section, we will provide mathemat-
ical formulations for these concepts, starting from single-agent RL and progressing
onto multi-agent RL methods.

19.2 Single-Agent Reinforcement Learning

Through trial and error, a RL agent tries to find the optimal policy that can max-
imize its long-term reward. Such a process is commonly formulated as a MDP.
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Figure 19.1.2 Diagram of a single-agent MDP (left) and multi-agent MDP/stochastic game
(right)

19.2.1 Problem Formulation: Markov Decision Process

Definition 19.1 (Markov Decision Process) An MDP can be described by a
number of key elements hS,A, P, R, �i.

• S: the set of environmental states.

• A: the set of agent’s possible actions.

• P : S ⇥ A ! �(S): for each timestep t 2 N, given agent’s action a 2 A, the
transition probability from a state s 2 S to the state in the next timestep s0 2 S.

• R : S⇥ A⇥ S! R: the reward function that returns a scalar value to the agent
for a transition from (s, a) to s0. The rewards have absolute values uniformly
bounded by Rmax.

• � 2 [0, 1] is the discount factor that represents the value of time.

At each time t, the environment has a state st. The learning agent observes this
2 and executes an action at. The action makes the environment transition into
the next state st+1 ⇠ P (·|st, at), and the new environment returns an immediate
reward R(st, at, st+1) to the agent. The goal of the agent is to solve the MDP:
to find the optimal policy that maximises reward over time. Mathematically, one
common objective is for the agent to find a Markovian and stationary policy3

function ⇡ : S ! �(A) that can guide it to take sequential actions such that

2 The agent can only observe part of the full environment state. The partially observable setting is
introduced in Definition (19.7) as a special case of Dec-PODMP.

3 Such an optimal policy exists as long as the transition function and the reward function are both
Markovian and stationary [112].



19.2 Single-Agent Reinforcement Learning 535

the discounted cumulative reward is maximized:

Est+1⇠P (·|st,at)

2

4
X

t�0

�tR (st, at, st+1)
���at ⇠ ⇡ (· | st) , s0

3

5 . (19.1)

Another common mathematical objective of MDP is to maximize the time-average
reward:

lim
T!1

Est+1⇠P (·|st,at)

"
1

T

T�1X

t=0

R(st, at, st+1)
���at ⇠ ⇡ (· | st) , s0

#
, (19.2)

which we do not consider in this work. Refer to [263] for a full analysis of this
objective.

Based on the objective function of Equation 19.1, under a given policy ⇡, we
can define: the state-action function (namely the Q-function, which determines the
expected return from undertaking action a in state s) and the value function (which
determines the return associated with the policy) by:

Q⇡(s, a) = E
⇡

2

4
X

t�0

�tR (st, at, st+1)
���a0 = a, s0 = s

3

5 , 8s 2 S, a 2 A, (19.3)

V ⇡(s) = E
⇡

2

4
X

t�0

�tR (st, at, st+1)
���s0 = s

3

5 , 8s 2 S, (19.4)

where E
⇡ is the expectation under the probability measure P

⇡ over the set of in-
finitely long state-action trajectories ⌧ = (s0, a0, s1, a1, ...), and where P⇡ is induced
by a state transition probability P , the policy ⇡, the initial state s and an initial
action a (in the case of Q-function). The connection between Q-function and value
function is V ⇡(s) = Ea⇠⇡(·|s)[Q

⇡(s, a)] and Q⇡ = Es0⇠P (·|s,a)[R(s, a, s0) + V ⇡(s0)].

19.2.2 Justification of Reward Maximisation

The current model for RL, as given by Equation 19.1, suggests that a single reward
function is su�cient for whatever problem we want our “intelligent agents” to solve.
The justification for this idea is deeply rooted in the von Neumann-Morgenstern
utility theory [433]. This theory essentially proves that an agent is rational if and
only if there exists a real-valued utility/reward function such that every preference
of the agent is characterized by maximizing the single expected reward. In the
case of the multi-objective MDP, we are still able to convert multiple objectives
into a single-objective MDP by the help of a scalarization function through a two-
timescale process, which is described in more detail in [351].
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19.2.3 Solving Markov Decision Processes

One commonly used notion in MDP is the (discounted-normalized) occupancy mea-
sure µ⇡(s, a) that uniquely corresponds to a given policy ⇡ and vice versa [402,
Theorem 2]. This is defined by:

µ⇡(s, a) = Est⇠P,at⇠⇡

2

4(1� �)
X

t�0

�t
(st=s^at=a)

3

5

= (1� �)
X

t�0

�t
P

⇡(st = s, at = a), (19.5)

where is the indicator function. Note that in Equation 19.5, P is the state tran-
sitional probability, and P

⇡ is the probability of state-action pairs when following
the stationary policy ⇡.

The real meaning of µ⇡(s, a) is as a measure of probability, that counts the
expected discounted number of visits of the individual’s admissible state-action
pairs. Correspondingly, µ⇡(s) =

P
a µ⇡(s, a) is the discounted state visitation fre-

quency; the stationary distribution of the Markov process induced by ⇡. With
the occupancy measure, we can write the Equation 19.4 as an inner product of
V ⇡(s) = 1

1��

⌦
µ⇡(s, a), R(s, a)

↵
. This implies that solving a MDP can be regarded

as a solving linear program (LP) of maxµ

⌦
µ(s, a), R(s, a)

↵
, and so the optimal pol-

icy is then ⇡⇤(a|s) = µ⇤(s, a)/µ⇤(s). However, this method for solving the MDP
remains at a text-book level, aiming to o↵er theoretical insights but lacking prac-
tically in the case of a large-scale LP with millions of variables [326].

In the context of optimal control [33], dynamic-programming approaches, such as
policy iteration and value iteration, can also be applied to solve the optimal policy
that maximizes Equation 19.3 & Equation 19.4, but they require knowledge of the
exact form of the model, the state transition function P (·|s, a), and the reward
function R(s, a, s0) .

In the setting of RL, on the other hand, the agent learns the optimal policy by
a trial-and-error process during its interaction with the environment, rather than
prior knowledge of the model. The word “learning” essentially means that the agent
turns the experiences that are collected during the interaction into knowledge about
the model of the environment. Based on the solution target, either the optimal
policy or the optimal value function, RL algorithms can be categorized into two
types: value-based methods and policy-based methods.

Value-Based RL Method
It is guaranteed that for all MDPs with finite states and actions, there exists at
least one deterministic stationary optimal policy [403, 399]. Value-based methods
are introduced to find the optimal Q-function Q⇤, that maximizes Equation 19.3.
Correspondingly, the optimal policy can be derived by taking the greedy action of
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⇡⇤ = arg maxa Q⇤(s, a). The classical Q-learning algorithm [441] approximates Q⇤

by Q̂ and updates its value via temporal-di↵erence learning.

Q̂(st, at)| {z }
new value

 Q̂(st, at)| {z }
old value

+ ↵|{z}
learning rate

·

temporal di↵erence error (TD error)z }| {✓
R|{z}

reward

+ �|{z}
discount factor

· max
a2A

Q̂(st+1, a)
| {z }

estimate of optimal value| {z }
new value (temporal di↵erence target)

� Q̂(st, at)| {z }
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◆
,

(19.6)

Theoretically, given the Bellman optimality operator H⇤, defined by:

(H⇤Q)(s, a) =
X

s0

P (s0|s, a)


R(s, a, s0) + � max

b2A
Q(s, b)

�
, (19.7)

we know it is a contraction mapping and that the optimal Q-function is the unique4

fixed point, H⇤(Q⇤) = Q⇤. The Q-learning algorithm draws random samples of
(s, a, R, s0) in Equation 19.6 to approximate Equation 19.7, but it is still guaranteed
to converge to the optimal Q-function [404] under the assumptions that the state-
action sets are discrete and finite, and are visited an infinite amount of times. [291]
extended the convergence result to a more realistic setting, by deriving the high
probability error bound for an infinite state space with a finite number of samples.

More recently, [283] applied neural networks as a function approximator for the
Q-function in updating Equation 19.6. Specifically, DQN performs the following
optimization:

min
✓

E(st,at,Rt,st+1)⇠D

"✓
Rt + � max

a2A
Q✓� (st+1, a)�Q✓ (st, at)

◆2
#

, (19.8)

The neural network parameter ✓ is fitted by drawing i.i.d samples from the replay
bu↵er D, and then being updated in a supervised learning fashion. Q✓� is a slowly-
updated target network that helps stabilize training. The convergence property and
finite sample analysis of DQN has been studied by [462].

Policy-Based RL Method

Policy-based methods are designed to directly search over the policy space to find
the optimal policy ⇡⇤. One can parameterize the policy expression: ⇡⇤ ⇡ ⇡✓(·|s)
and update the parameter ✓ in the direction of maximizing the cumulative reward:
✓  ✓ + ↵r✓V ⇡✓ (s) in order to find the optimal policy. However, the gradient
depends on the unknown e↵ect of policy changes on the state distribution. The
famous policy gradient (PG) theorem [400] derives an analytical solution that does
not involve the state distribution, that is:

r✓V
⇡✓ (s) = Es⇠µ⇡

✓ (·),a⇠⇡✓(·|s)

h
r✓ log ⇡✓(a|s) · Q⇡✓ (s, a)

i
, (19.9)

4 Note that although the optimal Q-function is unique, its corresponding optimal policies may not be.
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Figure 19.3.1 A snapshot of stochastic time in the intersection example. The scenario is
abstracted such that there are two cars, with each car taking one of two possible actions:
to yield or to rush. The outcome of each joint action pair is represented by a normal-form
game, with the reward value for the row player denoted in red, and column player denoted
in black. The Nash equilibria (NE) of this game are (rush, yield) and (yield, rush). If both
cars maximize their own reward selfishly without considering the others, then they will
end up with an accident

where µ⇡✓ is the state occupancy measure under policy ⇡✓, and r log ⇡✓(a|s) is the
updating score of the policy. When the policy is deterministic and the action set is
continuous, we get the deterministic policy gradient (DPG) theorem [375] written
as:

r✓V
⇡✓ (s) = Es⇠µ⇡

✓ (·)

h
r✓⇡✓(a|s) ·raQ⇡✓ (s, a)

��
a=⇡✓(s)

i
. (19.10)

A classical implementation of PG theorem is REINFORCE [449] that uses a
sample return Rt =

PT
i=t �i�tri to estimate Q⇡✓ . Alternatively, one can use a

model of Q! (also called critic) to approximate the true Q⇡✓ , and update the
parameter ! via TD learning. This gives rise to the famous actor-critic methods
[220, 337]. Important variants of actor-critic methods include trust-region methods
[359, 360], PG with optimal baselines [443, 476], soft actor-critic methods [156],
and deep deterministic policy gradient (DDPG) methods [250].

19.3 Multi-Agent Reinforcement Learning

When it comes to a multi-agent world, much like in the single-agent scenario, each
agent is still trying solve the sequential decision-making problem through a trial-
and-error procedure. The di↵erence is that the evolution of the environmental state,
and the reward function that each agent receives, will be now influenced by the joint
actions of all agents (see Figure 19.1.2). As a result, agents need to interact not only
with the environment, but also other learning agents. A decision-making process
involving multiple agents is usually modeled by a stochastic game [367], also known
as a Markov game [254].
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19.3.1 Problem Formulation: Stochastic Game

Definition 19.2 (Stochastic Game) A stochastic game can be regarded as a
multi-player5 extension to the MDP in Definition 19.1. Therefore, it is also defined
by a set of key elements hN, S, {Ai}i2{1,...,N}, P, {Ri}i2{1,...,N}, �i.

• N : the number of agents, N = 1 degenerates to single-agent MDP.

• S: the set of environmental states shared by all agents.

• A
i: the set of actions of agent i. We denote AAA := A

1 ⇥ · · ·⇥ A
N .

• P : S⇥AAA! �(S): for each timestep t 2 N, given agents’ joint actions a 2 AAA, the
transition probability from a state s 2 S to the state s0 2 S in the next timestep.

• Ri : S ⇥ AAA ⇥ S ! R: the reward function that returns a scalar value to the
i � th agent for a transition from (s,a) to s0. The rewards have absolute values
uniformly bounded by Rmax.

• � 2 [0, 1] is the discount factor that represents the value of time.

We use the superfix of (·i, ·�i) (for example, a = (ai, a�i)), when it is necessary
to distinguish between agent i and all the other N � 1 opponents.

Ultimately, the stochastic game (SG) acts as a framework that allows simultane-
ous moves from agents in a decision-making scenario6. The game can be described
sequentially, as follows: At each time t, the environment has a state st, based on
which each agent then executes its action ai

t simultaneously with all others. The
joint action from all agents makes the environment transition into the next state
st+1 ⇠ P (·|st,at), and then the environment determines an immediate reward
Ri(st,at, st+1) for each agent. As seen in the single-agent MDP scenario, the goal
of each agent i is to solve the SG. In other words, each agent aims to find a behav-
ioral policy (or a mixed strategy7 in game theory terminology) ⇡i 2 ⇧i : S! �(Ai)
that can guide the agent to take sequential actions, such that the discounted cumu-
lative reward8 in Equation 19.11 is maximized. Here �(·) is the probability simplex
on a set. In game theory, ⇡i is also called a pure strategy (vs a mixed strategy) if

5 Player is a common word used in game theory domain; agent is more commonly used in machine
learning domain. We do not discriminate their usage in this work, as well as strategy vs policy,
utility/payo↵ vs reward. Each pair refers to the same idea of game theory usage vs machine
learning usage

6 Extensive-form games allow agents to take sequential moves, we refer the full description to
[Chapter 5] of [370].

7 Behavioural policy refers to a function map from the history (s0, ai

0, s1, ai

1, ..., st�1) to an action.
Usually the policy is assumed to be Markovian such that it only depends on the current state st

rather than the entire history. A mixed strategy refers to a randomization over pure strategies(for
example, the actions). In SGs, behavioral policy and mixed policy are exactly the same. In
extensive-form games, they are di↵erent, but if the agent retains history of previous actions and
states (has perfect recall), each behavioral strategy has a realization-equivalent mixed strategy, and
vice versa [226].

8 Similar to single-agent MDP, we can also adopt the objective of time-average rewards.
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�(·) is replaced by a Dirac measure.
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Comparing Equation 19.11 with Equation 19.4, it is clear that the optimal policy
of each agent is not only determined by its own policy, but also the policies of
the other agents in the game. This leads to fundamental di↵erences in the solution
concept between single-agent RL and multi-agent RL.

19.3.2 Solving Stochastic Games

A SG can be considered as a sequence of normal-form games, which are games that
can be represented in a matrix. Take the original intersection scenario as an example
(see Figure 19.3.1). A snapshot of the stochastic game at time t (stage game) can
be represented by a normal-form game in the matrix format. The rows correspond
to the action set A1 for agent 1, and the columns correspond to the action set A2 for
agent 2. The values of the matrix are the rewards given for each of the joint action
pairs. In this scenario, if both agents only care about maximizing their own possible
reward with no consideration of other agents (the solution concept in a single-agent
RL) and choose the action to rush, they will reach the outcome of crashing into
each other. Of course, this is unsafe and so sub-optimal for each agent in the end,
despite the fact that the possible reward was highest for each agent when rushing.
Therefore, to solve a stochastic game and truly maximise cumulative reward, each
agent has to take strategic actions with consideration of others when determining
their optimal policy.

Unfortunately, unlike MDPs that have polynomial time-solvable linear-programming
formulations, solving SGs usually involves applying Newton’s method for solving
nonlinear programs. However, there are two special cases of two-player general-sum
discounted-reward SGs that can still be written as LPs [370] [Chapter 6.2]. They
are as follows:

• single-controller SG : the transition dynamics are determined by a single player;
P (·|a, s) = P (·|ai, s) if a[i] = ai, 8s 2 S, 8a 2 AAA.

• separable reward state independent transitions (SR-SIT) SG : the states and the
actions have independent e↵ects on the reward function, and the transition func-
tion only depends on the joint actions:

9↵ : S! R, � : AAA! R

such that these two conditions satisfy:

Ri(s,a) = ↵(s) + �(a), 8i 2 {1, ..., N}, 8s 2 S, 8a 2 AAA,
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and:

2)P (·|s0,a) = P (·|s,a), 8a 2 AAA, 8s, s0 2 S.

Value-Based MARL Method

The single-agent Q-learning process in Equation 19.6 still holds in solving the multi-
agent case, but with mild adjustments [63] as follows:

Q̂i(st,at) Q̂i(st,at) + ↵·
✓

Ri + � · evali
⇣�

Qi(st+1, ·)
 

i2{1,...,N}

⌘
�Qi(st,at)

◆

(19.12)
Compared to Equation 19.6, the max operator is changed to evali

�
{Qi(st+1, ·)}i2{1,...,N}

�

to reflect the fact each agent can no longer only consider itself, but has to also eval-
uate the situation of the stage game at time-step t + 1 by considering all agents’
interests, represented by the set of their Q-functions. Then, it has to be solved for
the optimal policy: solvei�{Qi(st+1, ·)}i2{1,...,N}

�
= ⇡i,⇤. Therefore, we can further

write the evaluation operator as:
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⌘
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(19.13)
In a nutshell, solvei returns agent i’s optimal policy at some equilibrium point (not
necessarily corresponding to its largest possible reward), and evali gives agent i’s
expected long-term reward under this equilibrium, assuming all other agents agree
to play the same equilibrium.

Policy-Based MARL Method

Value-based approaches su↵er from the curse of dimensionality, due to the combi-
natorial nature of multi-agent systems (for further discussion see: Section (19.4.1)).
This necessitates the development of policy-based algorithms with function ap-
proximations. In particular, each agent learns its own optimal policy ⇡i

✓i : S !
�(Ai) by updating the parameter ✓i of, for example, neural networks. Let ✓ =
(✓i)i2{1,...,N} represent the collection of policy parameters for all agents, and ⇡✓ :=Q

i2{1,...,N} ⇡i
✓i(ai|s) be the joint policy. To optimise the parameter ✓i, the policy

gradient theorem in Section (19.2.3) can be extended for the multi-agent context.
Given agent i’s objective function being J i(✓) = Es⇠P,a⇠⇡✓

⇥P
t�0 �tRi

t

⇤
, we have:
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h
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i
. (19.14)

Considering the continuous action set with deterministic policy, we have the multi-
agent deterministic policy gradient (MADDPG) [260], written as:

r✓iJ i(✓) = Es⇠µ⇡
✓ (·)

h
r✓i log ⇡✓i(ai|s) ·rai

Qi,⇡✓ (s,a)
��
a=⇡✓(s)

i
. (19.15)

Note that in both Equations (19.14) & (19.15), the expectation over the joint policy
⇡✓ implies that it requires to observe other agents’ policies.
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19.3.3 Solution Concept of Nash Equilibrium

Game theory plays a significant role in multi-agent learning by o↵ering solution
concepts that describe the outcomes of a game by showing which strategies will
finally be adopted by players. There are many types of solution concepts for MARL
(see Section 19.4.2), among which the most famous in non-cooperative9 game theory
[295] is probably the NE.

In a normal-form game, the NE characterizes an equilibrium point of the joint
strategy profile (⇡1,⇤, ..., ⇡N,⇤), where each agent acts in their best response to
the others. The best response produces the optimal outcome for the player once all
other players’ strategies have been considered. Player i’s best response10 to ⇡�i is
a set of policies such that:

⇡i,⇤ 2 Br(⇡�i) =
n

arg max
⇡̂2�(Ai)

E⇡̂i,⇡�i [Ri]
o

. (19.16)

NE states that if all players are perfectly rational, none of the them will have
motivation to deviate from best their response ⇡i,⇤ given others are playing ⇡�i,⇤.
Note that NE is defined in terms of best response, which relies on relative reward
values, suggesting that the exact values of rewards are not required for identifying
NE. In fact, NE is invariant under positive a�ne transformations of a players’
reward functions. By applying Brouwer’s fixed point theorem, [295] proved that for
any game with a finite set of actions, a mixed-strategy NE always exists. In the
example of driving through intersections in Figure 19.3.1, the NE are (yield, rush)
and (rush, yield).

For a SG, one commonly used equilibrium is a stronger version of the NE, called
the Markov Perfect NE. [267]. It s defined by:

Definition 19.3 (Nash Equilibrium for Stochastic Game) A Markovian strategy
profile ⇡⇤ = (⇡i,⇤, ⇡�i,⇤) is a Markov perfect NE of a SG – as defined in Definition
(19.2) - if the following condition holds:

V ⇡i,⇤,⇡�i,⇤
(s) � V ⇡i,⇡�i,⇤

(s), 8s 2 S, 8⇡i 2 ⇧i, 8i 2 {1, ..., N}. (19.17)

“Markovian” means the Nash policies are measurable with respect to a partic-
ular partition of possible histories (usually referring to the last state). The word
“perfect” means that the equilibrium is also subgame-perfect [362] regardless of
the starting state. Considering the sequential nature of SGs, these assumptions
are necessary, while still maintaining generality. Hereafter, The Markov perfect NE
will be referred to as NE. It has been proven that a mixed-strategy NE 11 always

9 “Non-cooperative” does not mean agents cannot collaborate or have to fight against each other all
the time, rather it means each agent maximizes its own reward independently, and cannot group
into coalitions to take joint actions.

10 Best responses may not be unique, if a mixed-strategy best response exists, there must be at least
one best response that is also a pure strategy.

11 Note that this is di↵erent from a single-agent MDP where a single, “pure” strategy optimal policy
always exists. A simple example is the Rock-Paper-Scissors game where none of the pure strategies
is the NE, and the only NE is to equally mix between the three.
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exists for both discounted and average-reward 12 SGs [116], though they may not
be unique. In fact, checking its uniqueness is NP -hard [81]. With the NE as the
solution concept of optimality, we can re-write Equation 19.13 as:

evaliNash

⇣�
Q

i(st+1, ·)
 
i2{1,...,N}

⌘
= V

i
⇣
st+1,

n
Nashi�{Qi(st+1, ·)}i2{1,...,N}

�o

i2{1,...,N}

⌘
.

(19.18)

In Equation 19.18, Nashi(·) = ⇡i,⇤ computes the NE of agent i’s strategy, and
V i
�
s, {Nashi}i2{1,...,N}

�
is the expected payo↵ for agent i from state s onwards un-

der this equilibrium. Equation 19.18 together with Equation 19.12 form the learning
steps of Nash Q-learning [181]. This essentially leads to the outcome of a learnt set
of optimal policies that reach NE for every single stage game encountered. Fur-
thermore, similar to normal Q-learning, the Nash-Q operator defined in Equation
19.19 is also proved to be a contraction mapping, and the stochastic updating rule
probably converges to NE for all states when the NE is unique:

(HNashQ)(s, a) =
X

s0

P (s0|s, a)


R(s, a, s0) + � · evaliNash

⇣�
Qi(st+1, ·)

 
i2{1,...,N}

⌘�
.

(19.19)
Finding a NE in a two-player general-sum game can be formulated as a linear com-

plementarity problem (LCP), which can then be solved using the Lemke-Howson
algorithm [368]. However, the exact solution for games with more than three players
is unknown. In fact, finding the NE is computationally demanding. Even in the case
of two-player games, the complexity of solving the NE is PPAD-hard13 (polyno-
mial parity arguments on directed graphs) [93, 76], meaning that in the worst case
scenario, it will take time that is exponential in relation to the size of the game. This
prohibits any brute force or exhaustive search solutions unless P = NP (see Figure
19.3.2). As we would expect, it is much more di�cult to solve the NE for general
SGs. In SGs, determining whether a pure-strategy NE exists is PSPACE-hard.
Even if the SG has a finite time horizon, it still remains NP -hard [82].

19.3.4 Special Types of Stochastic Game

To summarize the solutions to SGs, one can think of the “master” equation to be:

Normal-form game solver + MDP solver = Stochastic game solver.

The first term refers to solving an equilibrium (NE) for the stage game encountered
at every time-step. The second term refers to applying a RL technique (like Q-
learning) to model temporal structure in the sequential decision-making process.

12 The average-reward SGs require more subtleties because the limit of Equation 19.2 in the
multi-agent setting may be a cycle and thus not exist. Instead, NE are proved to exist on a special
class of irreducible SGs, where every stage game can be reached regardless of the adopted policy.

13 The class of NP -complete is not suitable to describe the complexity of solving the NE, because the
NE is proven to always exist [295], while a typical NP -complete problem - the traveling salesman
problem (TSP) for example - asks the solution for the question: “Given a distance matrix and a
budget B, find a tour that is cheaper than B, or report that none exists”.



544 Multi-Agent Reinforcement Learning

NEXPTIME

PSPACE

NP

PPAD

P

Figure 19.3.2 The landscape of di↵erent complexity classes. Relevant examples are: 1)
solving the NE in a two-player zero-sum game, P [303]. 2) solving the NE in general-sum
game, PPAD-hard [93]. 3) checking the uniqueness of the NE, NP -hard [81]. 4) checking
whether a pure-strategy NE exists in a stochastic game, PSPACE-hard [82]. 5) solving
Dec-POMDP, NEXPTIME-hard [32]

The combination of the two gives a solution to SGs where agents reach a particular
equilibrium at each and every time-step during the game.

Since solving general SGs with NE as the solution concept is computation-
ally challenging, researchers instead aim to study special types of SGs that have
tractable solution concepts. In this section, we give a brief summary of these special
types of games.

Definition 19.4 (Special Types of Stochastic Games) Given the general form of
a SG defined in Definition (19.2), we have the following special cases:

• normal-form game / repeated game: |S| = 1, see the example in Figure
19.3.1. These games have only a single state. Though not theoretically grounded,
it is practically easier to solve a small-scale SG.

• identical-interest setting14: agents share the same learning objective, which
we denote as R. Since all agents are treated independently, each agent can safely

14 In some of the literature on this topic, identical-interest games are equivalent to team games. Here
we refer to it as a more general class of games where there exists a shared objective function that
all agents collectively optimize, though their individual reward functions can still be di↵erent.
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choose the action that only maximizes its own reward. As a result, single-agent RL
algorithms can be applied safely, and a decentralized method developed. Several
types of SGs fall in this category.

– team games / fully-cooperative games / multi-agent MDP (MMDP):
agents are assumed to be homogeneous and interchangeable, so importantly,
they share the same reward function15, R = R1 = R2 = · · · = RN .

– team-average reward games / networked multi-agent MDP (M-MDP)
: agents can have di↵erent reward functions, but they share the same objective,
R = 1

N

PN
i=1 Ri.

– stochastic potential games: agents can have di↵erent reward functions, but
their mutual interests are described by a shared potential function R = �, de-
fined as, � : S⇥AAA! R such that 8(ai, a�i), (bi, a�i) 2 AAA, 8i 2 {1, ..., N}, 8s 2 S

and the following equation holds:

Ri
�
s,
�
ai, a�i

��
�Ri

�
s,
�
bi, a�i

t

��
= �

�
s,
�
ai, a�i

��
��

�
s,
�
bi, a�i

��
. (19.20)

Games of this type are guaranteed to have a pure-strategy NE. It can also be
seen that potential games degenerate to team games if one chooses the reward
function to be a potential function.

• zero-sum setting: agents share the opposite interest and act competitively, and
each agent optimizes against the worst-case scenario. Elegantly, computing the
NE in a zero-sum setting can be solved using a linear program (LP) in polynomial
time thanks to a minimax theorem developed by [303]. The idea of min-max
values is also deeply rooted in robust learning. We can subdivide the zero-sum
setting:

– two-player constant-sum games: R1(s, a, s0) + R2(s, a, s0) = c, 8(s, a, s0),
where c is a constant and usually c = 0.

– two-team competitive games: two teams compete against each other, with
team size N1 and N2 respectively. Their reward functions are:

{R1,1, ..., R1,N1 , R2,1, ..., R2,N2}.

Team members within a team share the same objective of either:

R1 =
X

i2{1,...,N1}

R1,i/N1

, or:

R2 =
X

j2{1,...,N2}

R2,j/N2

, and R1 + R2 = 0.

15 In some of the literature on this topic (for example, [439]), agents are assumed to receive the same
expected reward in a team game, which means in the presence of noise, di↵erent agents may receive
di↵erent reward values at a particular moment.
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– harmonic games: Any normal-form games can be decomposed into a po-
tential game plus a harmonic game [69]. A harmonic game (for example, the
Rock-Paper-Scissor game) can be regarded a general class of zero-sum games
with a harmonic property. Let 8p 2 AAA be a joint pure-strategy profile and
AAA

[�i] = {q 2 AAA : qi 6= pi, q�i = p�i} be the set of strategies that di↵er from p
on agent i, then the harmonic property is:

X

i2{1,...,N}

X

q2AAA[�i]

�
Ri(p)�Ri(q)

�
= 0, 8p 2 AAA.

• linear-quadratic (LQ) setting: the reward function is quadratic with respect
to the states and actions, and the transition model follows linear dynamics. Com-
pared to a black-box reward function, LQ games o↵er a much simpler setting.
For example, actor-critic methods are known to facilitate convergence to the NE
of zero-sum LQ games [6]. Again, the LQ setting can be subdivided:

– two-player zero-sum LQ games: Q 2 R
|S|, U1 2 R

|A1| and W 2 2 R
|A2| are

the known cost matrices for the state and action spaces respectively, while the
matrices A 2 R

|S|⇥|S|, B 2 R
|S|⇥|A1|, C 2 R

|S|⇥|A2| are usually unknown to the
agent:

st+1 = Ast + Ba1
t + Ca2

t , s0 ⇠ P0,

R1(a1
t , a

2
t ) = �R2(a1

t , a
2
t ) = �Es0⇠P0

2

4
X

t�0

sT
t Qst + a1

t
T
U1a1

t � a2
t
T
W 2a2

t

3

5 .
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– multi-player general-sum LQ games: the di↵erence with respect to a two-
player game is that here the summation of agent’s reward does not necessarily
equal to zero:

st+1 = Ast + Bat, s0 ⇠ P0,

Ri(a) = �Es0⇠P0

2

4
X

t�0

sT
t Qist + ai

t
T
U iai

t

3

5 . (19.22)

19.3.5 Partially Observable Setting

A partially-observable stochastic game (POSG) assumes that agents have no access
to the exact environmental state, but only an observation of the state through an
observation function. Formally, it is defined by:

Definition 19.5 (partially-observable stochastic games) A POSG is defined by
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the set hN, S, {Ai}i2{1,...,N}, P, {Ri}i2{1,...,N}, �, {Oi}i2{1,...,N}, O| {z }
newly added

i, on top of the

SG defined in Definition (19.2), POSGs add the following additional terms:

• O
i: an observation set for each agent i. The joint observation set is defined OOO :=

O
1 ⇥ · · ·⇥O

N .
• O : S ⇥AAA! �(OOO): an observation function O(o|a, s0) denotes the probability of

observing o 2 OOO given the action a 2 AAA, and is taken to the next state s0.

Each agent’s policy now changes to ⇡i 2 ⇧i : O! �(Ai).

Although the added partial-observability constraint is common in practice for
many real-world applications, theoretically, it only exacerbates the di�culty of
solving SGs. Even in the simplest setting of a two-player fully-cooperative finite-
horizon game, solving a POSG is NEXP-hard (see Figure 19.3.2), which means
it requires super-exponential time to solve in the worst case scenario [32]. How-
ever, the benefits of studying games in the partially-observable setting come from
algorithmic advantages. Centralized-training-with-decentralized-execution methods
[312, 260, 121, 345, 460] have shown many empirical successes in solving POSGs,
and together with DNNs, they hold great promise.

A POSG is one of the most general class of games. An important subclass of
POSGs are decentralised partially-observable MDPs (Dec-POMDP), where rewards
are shared across all agents. Formally, it is defined as follows:

Definition 19.6 (Dec-POMDP) A Dec-POMDP is a special type of POSG, as
defined in Definition (19.5), with R1 = R2 = · · · = RN .

Dec-POMDPs can be connected with a single-agent MDP through partially-
observability, or connected with a stochastic team game through the assumption of
identical rewards. Therefore, versions of both single-agent MDPs and team games
are special types of Dec-POMDPs.

Definition 19.7 (Special types of Dec-POMDPs) The following games are special
types of Dec-POMDPs.

• partially-observable MDP (POMDP): there is only one agent of interest,
N = 1. It is equivalent to a single-agent MDP in Definition (19.1) with a partial-
observability constraint.

• decentralised MDP (Dec-MDP): the agents in a Dec-MDP have joint full
observability. That is, if all agents share their observations, they can recover the
state of the Dec-MDP unambiguously. Mathematically, we have 8o 2 OOO, 9s 2 S

such that P(St = s|OOOt = o) = 1.
• fully-cooperative stochastic games: assuming each agent has full observabil-

ity, 8i = {1, ..., N}, 8oi 2 Oi, 9s 2 S such that P(St = s|Ot = oi) = 1. The
fully-cooperative SG from Definition (19.4) is a type of Dec-POMDP.
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19.4 Grand Challenges

Compared to single-agent RL, multi-agent RL is a general framework which better
matches the broad scope of real-world AI applications. However, due to the exis-
tence of multiple learning agents simultaneously, MARL methods su↵er from more
theoretical challenges, in addition to those already present in single-agent RL.

19.4.1 Combinatorial Complexity

In the context of multi-agent learning, each agent has to consider the other op-
ponents’ actions in order to take the best response; this is deeply rooted in each
agent’s reward function and shown as the joint action a in their Q-function Qi(s,a)
in Equation 19.12. The size of such the joint action space is |A|N , which grows ex-
ponentially with the number of agents and thus largely constrains the scalability
of MARL methods. Furthermore, the combinatorial complexity is worsened by the
fact that solving a NE in game theory is PPAD-hard, even for two-player games.
Therefore, for multi-player general-sum games (neither team games nor zero-sum
games), it is non-trivial to find an applicable solution concept.

One common way to address this issue is by assuming certain factorized structures
on action dependency, so that the reward function or the Q-function can be largely
simplified. For example, a graphical game assumes an agent’s reward is only a↵ected
by its neighboring agents, defined by the graph from [210]. This directly leads to a
polynomial-time solution for the computation of a NE in certain tree graphs [211],
though the scope of applications is rather limited beyond this.

Recent progress has also been made on leveraging special neural network archi-
tectures for Q-function decomposition [395, 345, 460]. Aside from the fact these
methods can only work for the team-game setting, the majority of them lack the-
oretical backing. There are still open questions that need answering, such as un-
derstanding the representational power (the approximation error) of the factorized
Q-functions in a multi-agent task, and how factorization itself can be learnt from
scratch.

19.4.2 Multi-Dimensional Learning Objectives

Compared to single-agent RL, where the only goal is to maximize an agent’s long-
term reward, the learning goals in MARL are naturally multi-dimensional, as the
objective of all agents are not necessarily aligned. [54, 55] proposed to classify the
goals of the learning task into two types: rationality and convergence. Rational-
ity ensures an agent takes the best possible response to the opponents when they
are stationary, and convergence ensures the learning dynamics will eventually lead
to a stable policy against a given class of opponents. Reaching both rationality and
convergence gives rise to the achievement of the NE.
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In terms of rationality, the NE characterizes a fixed point of a joint optimal strat-
egy profile from which no agents would be motivated to deviate, as long as all of
them are perfectly rational. However, in practice, an agent’s rationality can be eas-
ily bound by either the cognitive limitation and/or the tractability of the decision
problem. In these scenarios, the rationality assumption can be relaxed to include
other types of solution concepts such as: the recursive reasoning equilibrium, which
results from modeling the reasoning process recursively among agents with finite
levels of hierarchical thinking (for example, an agent may reason in the following
way: I believe that you believe that I believe ...) [448, 447]; best response against
a target type of opponent [342]; the mean-field game equilibrium, that describes
multi-agent interactions as a two-agent interaction between each agent itself and
the population mean [153, 459, 458]; evolutionary stable strategies, that describes
an equilibrium strategy based on its evolutionary advantage of resisting invasion
by rare emerging mutant strategies [422? ]; and the robust equilibrium (also called
trembling-hand perfect equilibrium in game theory) which is stable against adver-
sarial disturbance [247, 23, 456].

In terms of convergence, although most MARL algorithms are contrived to con-
verge to the NE, the majority of them either lack rigorous convergence guarantee
[471], or potentially converge only under strong assumptions such as the existence
of a unique NE [256, 180], or are provably non-convergent in all cases [271]. [478]
identified the non-convergent behavior of value-iteration methods in general-sum
SGs, and instead, he proposed an alternative solution concept to the NE - cyclic
equilibria - that value-based methods converge to. The concept of no regret (also
called the Hannan consistent in game theory [158]), measures convergence by com-
parison against the best possible strategy in hindsight. This was also proposed as
a new criteria to evaluate convergence in zero-sum self-plays [52, 160, 479]. In the
two-player zero-sum games with a non-convex non-concave loss landscape (train-
ing GANs [145]), gradient-descent-ascent methods are found to reach a Stackelberg
equilibrium [252, 115] or a local di↵erential NE [272] rather than the general NE.

Finally, it is worth mentioning that despite the above solution concepts account-
ing for convergence, building a convergent objective for MARL methods with DNNs
is still an uncharted area. This is partly because the global convergence of a single-
agent deep RL algorithm, for example neural policy gradient methods [437, 258]
and neural TD learning algorithms [65], have not been studied yet.

19.4.3 Non-Stationarity Issue

The most well-known challenge of multi-agent learning versus single-agent learning
is probably the non-stationarity issue. Since there are multiple agents concurrently
improving their policies according to their own interests, from each agent’s perspec-
tive, the environmental dynamics become non-stationary and di�cult to interpret
when learning. This is because the agent itself cannot tell whether the state tran-
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Figure 19.4.1 The scope of multi-agent intelligence, as described here, consists of three
pillars. Deep learning serves as a powerful function approximation tool for the learning
process. Game theory provides an e↵ective approach to describe the outcome of learning.
Reinforcement learning o↵ers a valid approach to describe agents’ incentives in multi-agent
systems

sition - or the change in reward - is a genuine outcome due to its own action, or
if it is due to its opponent’s explorations. Although learning independently by ig-
noring the other agents completely can sometimes generate surprisingly powerful
empirical performance [327, 270], this approach essentially harms the stationar-
ity assumption that supports the theoretical convergence guarantee of single-agent
learning methods [408]. As a result, the Markovian property of the environment is
lost, and the state occupancy measure of a stationary policy in Equation 19.5 no
longer exists. For example, the convergence result of single-agent policy gradient
methods in MARL are provably negative even in the setting of linear-quadratic
games [272].

The non-stationarity issue can be further aggravated by TD learning, which oc-
curs with the replay bu↵er that most deep RL methods adopt currently [122]. In
single-agent TD learning (see Equation 19.8), the agent bootstraps the current es-
timate of the TD error, saves it in the replay bu↵er, and samples the data in the
replay bu↵er to update the value function. In the context of multi-agent learning,
since the value function for one agent also depends on other agents’ actions, the
bootstrap process in TD learning also requires sampling the actions from other
agents. This brings about two problems. First, the sampled actions barely repre-
sent the full behavior of other agents’ underlying policies across di↵erent states.
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Second, an agent’s policy can change during training, so the samples in the replay
bu↵er can be soon outdated. This essentially means that the dynamics that gener-
ated the data in the agent’s replay bu↵er needs to be constantly updated to reflect
the current dynamics in which it is learning. This exacerbates the non-stationarity
issue.

In a nutshell, the non-stationarity issue forbids reusing the same mathemati-
cal tool for analyzing single-agent algorithms in the multi-agent context. However,
there is one exception, which is the identical-interesting game in Definition (19.4).
In such settings, each agent can safely perform selfishly without considering each
other’s policies, since it knows other agents will act in its own interest as well. The
stationarity is thus maintained, so single-agent RL algorithms can still be applied.

19.4.4 Scalability Issue when N � 2

Combinatorial complexity, multi-dimensional learning objectives, and the issue of
non-stationarity all result in the fact that the majority of MARL algorithms are
capable of solving games with only two players, and in particular, two-player zero-
sum games [471]. As a result, solutions to general-sum settings with more than two
agents (for example, the many-agent problem) remains an open challenge. Such
a challenge needs to be addressed from all three perspectives of multi-agent in-
telligence (see Figure 19.4.1): game theory, which provides realistic and tractable
solution concepts to describe learning outcomes of a many-agent system; reinforce-
ment learning algorithms, that o↵er provably convergent learning algorithms that
can reach stable and rational equilibria in the sequential decision-making process;
and finally deep learning techniques, that empower the learning algorithms with
expressive function approximators.
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Vińıcius Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat,
Joel Z Leibo, Karl Tuyls, et al. Value-decomposition networks for cooperative
multi-agent learning based on team reward. In AAMAS, pages 2085–2087,
2018.



574 References

[396] Wesley Suttle, Zhuoran Yang, Kaiqing Zhang, Zhaoran Wang, Tamer Basar,
and Ji Liu. A multi-agent o↵-policy actor-critic algorithm for distributed
reinforcement learning. arXiv preprint arXiv:1903.06372, 2019.

[397] Richard S Sutton. Learning to predict by the methods of temporal di↵erences.
Machine learning, 3(1):9–44, 1988.

[398] Richard S Sutton. Integrated architectures for learning, planning, and react-
ing based on approximating dynamic programming. In ICML, pages 216–224,
1990.

[399] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction, volume 1. MIT press Cambridge, 1998.

[400] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function ap-
proximation. In Advances in neural information processing systems, pages
1057–1063, 2000.

[401] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour,
et al. Policy gradient methods for reinforcement learning with function ap-
proximation. In NIPS, volume 99, pages 1057–1063, 1999.

[402] Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning
using linear programming. In Proceedings of the 25th international conference
on Machine learning, pages 1032–1039, 2008.
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